Synthesis of Cyclic Amines and Allylic Sulfides by Phenylthio Migration of β-Hydroxy Sulfides

lain Coldhamt and Stuart Warren*

University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK

Abstract

Rearrangement of β-hydroxy sulfides proceeds stereospecifically with capture of the episulfonium ion by the nitrogen atom of an amide. Almost quantitative yields of substituted pyrrolidines are obtained using a sulfonamide as the intramolecular nucleophile and with activation by trimethylsilyl trifluoromethanesulfonate (TMSOTf). With a free amine no cyclization takes place, but instead allylic sulfides are formed.

Treatment of a β-hydroxy sulfide with acid gives rise to the formation of an intermediate episulfonium ion and release of water. This so-formed three-membered episulfonium ion cannot be isolated and breaks down by loss of a proton and cleavage of the weaker carbon-sulfur bond to give an allylic sulfide. ${ }^{1}$ For example, with acid catalysis the β-hydroxy sulfide anti-1, $\mathbf{R}=$ $\mathrm{SiPh}_{2} \mathrm{Bu}^{t}$ gives the episulfonium ion 2 which loses a proton to give the allylic sulfide syn-3, $\mathrm{R}=\mathrm{SiPh}_{2} \mathrm{Bu}^{t}$. ${ }^{2}$ This 1,2-migration of a phenylthio group proceeds stereospecifically with inversion of stereochemistry at the migration terminus. When the rearrangement is performed with anti-1, $(\mathrm{R}=\mathrm{H})$ the intermediate episulfonium ion $\mathbf{2}$ is captured intramolecularly by the hydroxy group. This gives the spirocyclic ether 4 in essentially quantitative yield. ${ }^{2}$ It is possible to control the relative stereochemistry of both the allylic sulfide 3 and the cyclic ether 4 as in both cases the phenylthio group migrates with complete inversion of stereochemistry at the migration terminus. ${ }^{3}$

We were interested in extending this cyclization procedure to the stereocontrolled synthesis of cyclic amines. ${ }^{4}$ We now describe the successful use of amides as intramolecular nitrogen nucleophiles to give the corresponding nitrogen heterocycles. ${ }^{5}$

Initially we focussed our attention on the rearrangement of the β-hydroxy sulfides syn- and anti-9 and syn- and anti-11, which have an amino group as a potential intramolecular nucleophile to capture the episulfonium ion. The syn isomers were prepared using a stereoselective aldol reaction with S phenyl propanethioate 5^{6} and the 2-phenylthio aldehyde $6{ }^{7}$ The resulting thioester 7 was converted into the primary amide 8 using aqueous ammonia. Reduction then gave the amine syn-9 ready for attempted rearrangement-cyclisation.
\dagger Current address: Department of Chemistry, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.

Scheme 2 Reagents: i, 9-BBN triflate, $\operatorname{Pr}_{2}{ }_{2} \mathrm{NEt}, \mathrm{Et}_{2} \mathrm{O}$; ii, $\mathrm{NH}_{4} \mathrm{OH}$; iii, BH_{3}. THF

With benzylamine instead of ammonia, the N-substituted primary amide syn-10 could be prepared, but yields were considerably improved by using the Weinreb procedure ${ }^{8}$ in which the amine is first treated with trimethylaluminium before addition of the ester. Reduction of the amide syn-10 gave the desired amine syn-11.

We have previously studied the aldol reaction on aldehyde 6 with the aim of obtaining high 2,3-stereoselectivity. ${ }^{2 b}$ As mentioned above, the boron enolate of S-phenyl propanethioate gives excellent syn selectivity (>95 : < 5 syn:anti) and we have found that the use of the lithium enolate of 2,6-dimethylphenyl propionate gives excellent anti selectivity (< 5: > 95 syn:anti). Unfortunately, this route to the amines anti-9 and anti-11 was thwarted by the lack of reactivity of the bulky aromatic ester to ammonia or benzylamine.

Scheme 1 Reagents: i, TsOH (cat.), benzene

Scheme 3 Reagents: i, $\mathrm{PhCH}_{2} \mathrm{NH}_{2}, \mathrm{Me}_{3} \mathrm{Al}$; ii, $\mathrm{BH}_{3} \cdot \mathrm{THF}$

The less bulky methyl esters anti-12 and syn-12, formed from a less selective aldol reaction with methyl propionate, could however be converted into the N-substituted primary amides anti-10 and syn-10. In these cases with the methyl esters it was imperative to use the Weinreb procedure as simple reflux with benzylamine caused epimerization at C-2. Attempts to reduce the amide anti-10 with borane or LiAlH_{4} failed.

Scheme 4 Reagents: i, LDA; then 6; ii, $\mathrm{PhCH}_{2} \mathrm{NH}_{2}, \mathrm{Me}_{3} \mathrm{Al}$
A route to the anti series was achieved using the anion from propiononitrile with the aldehyde 6. This turned out to be moderately selective in favour of the nitrile anti-13 which was reduced to the amine anti-9 using LiAlH_{4}. The nitrile syn- $\mathbf{1 3}$ could also be reduced to the amine syn-9, thereby confirming the stereochemical assignment.

Scheme 5 Reagents: i, LDA; then 6; ii, $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}$
It is interesting to note that in both the ester 12 and the nitrile 13 the $J^{2,3}$-value is larger for the syn isomer than for the corresponding anti isomer (Table 1).* This reversal is thought to be due to the bulky 1-phenylthiocyclohexyl group at C-3. The ${ }^{13} \mathrm{C}$ NMR shift of the methyl group on $\mathrm{C}-2$ has proved to be a more reliable guide to the stereochemistry (Table 1). ${ }^{9}$
With the amines syn-9, anti-9 and syn-11 in hand, we were ready to carry out the rearrangement reaction. Under the

[^0]Table 1 Comparison of coupling constants and ${ }^{13} \mathrm{C}$ NMR data

	$J^{2.3}(\mathrm{~Hz})$	$\delta_{\mathrm{C}}\left(\mathrm{Me}^{2}\right)$ (ppm)
syn-7	5.3	15.2
syn-8	3.1	14.2
syn-10	3.1	14.2
anti-10	m	19.3
anti-12	1.8	18.0
anti-13	0.9	18.4
syn-12	5.6	14.2
syn-13	6.5	15.6

conditions used for the diols ${ }^{2 b}$ in which a catalytic amount of acid is used we observed no reaction whatsoever. However, when more than one equivalent of acid was added, the rearrangement proceeded smoothly. This gave not the expected cyclic amine but the allylic sulfides 14 and 15 . The allylic sulfides were formed in excellent yield and with complete stereochemical control, inversion of stereochemistry having taken place at the migration terminus. The lack of any cyclized product suggests that the amine remains protonated throughout the rearrangement, thereby preventing the nitrogen lone pair from intercepting the intermediate episulfonium ion.

Scheme 6 Reagents and conditions: 1.9 mol equiv. TsOH , benzene, reflux

Attempts were made to effect the rearrangement of the amines 9 and 11 under a variety of conditions (e.g., SOCl_{2}, BuLi then $\mathrm{SOCl}_{2}, \mathrm{TMSOTf}, \mathrm{TiCl}_{4}, \mathrm{Ph}_{3} \mathrm{P}+$ diethyl azodicarboxylate, $\mathrm{Ph}_{3} \mathrm{P}+\mathrm{CCl}_{4}$) in the hope that the nitrogen lone pair would remain available for intramolecular attack. In no case did we observe any cyclized product; with Lewis acids the only isolable compound was the allylic sulfide and with Mitsunobu conditions no reaction took place.

Cyclization to the pyrrolidine could be achieved by a twostep process in which the allylic sulfide was treated with mercury(II) acetate followed by reduction of the carbonmercury bond by NaBH_{4}. This reaction may proceed via cyclization onto either the three-membered mercuronium ion or onto the episulfonium ion. The cyclic amine syn- 16 was obtained as a single stereoisomer.

With the failure to promote the direct cyclization of the amino- β-hydroxy sulfides, we turned our attention to the cyclization of the corresponding amido- β-hydroxy sulfides. The cyclization of the nitrogen atom of an amide group onto an episulfonium ion ${ }^{10}$ or an episelenonium ion ${ }^{11}$ is known. These reported cyclizations are all accomplished from the activation of an alkene and so suffer from lack of complete stereochemical control. Only simple carboxylic amides or carbamates have been investigated although studies with other amide groups, in particular ureas and sulfonamides, have been carried out on cyclizations onto alkenes by activation with $\mathrm{Pd}^{\mathrm{II} 12}$ or $\mathrm{I}_{2} .{ }^{13}$ The work described in this paper confirms the trend that, in general,

Table 2 Conversion of amines into amides

9
17-24

Stereochemistry	Conditions	Product	R	Yield (\%)
syn-9	MeCOCl	syn-17	COMe	73
anti-9	MeCOCl	anti-17	COMe	84
syn-9	EtNCO	syn-18	CONHEt	97
syn-9	$\mathrm{Et}_{2} \mathrm{NCOCl}$	syn-19	CONEt ${ }_{2}$	60
syn-9	PhNCO	syn-20	CONHPh	89
anti-9	PhNCO	anti-20	CONHPh	97
anti-9	$p-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{NCO}$	syn-21	CONHC ${ }_{6} \mathrm{H}_{4} \mathrm{OMe}-p$	92
anti-9	$p-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{NCO}$	syn-22	$\mathrm{CONHC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-p$	96
syn-9	EtOCOCl	syn-23	$\mathrm{CO}_{2} \mathrm{Et}$	99
anti-9	EtOCOCl	anti-23	$\mathrm{CO}_{2} \mathrm{Et}$	98
syn-9	$\mathrm{TolSO}_{2} \mathrm{Cl}$	syn-24	$\mathrm{SO}_{2} \mathrm{Tol}$	94
anti-9	$\mathrm{TolSO}_{2} \mathrm{Cl}$	anti-24	$\mathrm{SO}_{2} \mathrm{Tol}$	96

Scheme 7 i, $\mathrm{TsOH} ; \mathrm{ii}, \mathrm{Hg}(\mathrm{OAc})_{2} ;$ iii, NaBH_{4}
sulfonamides are the best group for nitrogen cyclization. Carbamates are slightly better than ureas which, in turn, are much better than simple carboxylic amides.

The syn and anti amides 17-24 were prepared as shown in Table 2. These amides were treated with TsOH or TMSOTf to allow the 1,2-phenylthio migration. In each case rearrangement took place with complete stereochemical control with inversion of stereochemistry at the migration terminus.

The simple carboxylic amides syn-17 and anti-17 rearranged to give the allylic sulfides anti-26 and syn-26, respectively. With

TsOH the allylic sulfide was the only product. However, with TMSOTf a small amount of the pyrrolidine anti- 25 was formed. The lack of reactivity of simple carboxylic amides is often attributed to the strain in the pyrrolidine products as judged from the rotational barrier around the amide bond. ${ }^{13}$ As the nitrogen lone pair will be strongly delocalized into the carbonyl group we turned our attention to other, less basic amide groups.

Under our usual conditions for the 1,2 -shift (0.8 mol equiv. of TsOH) the rearrangement of the urea syn- 18 was slow. However, under these conditions a greater ratio of the pyrrolidine syn- 27 to the allylic sulfide anti-28 resulted as compared with the much faster reaction when using excess of TsOH . This suggests that the urea group is protonated in preference to the secondary hydroxy group. With less than 1 mol equiv. of acid there will therefore be only a low concentration of the hydroxy-protonated species which is required for episulfonium ion formation. When more than 1 mol equiv. of acid is used, the urea group can remain protonated during the rearrangement and so be unavailable for nucleophilic attack. This will result in a greater proportion of allylic sulfide with excess of acid. We found that the solvent plays only a minor role (Table 3); the use of higher-boiling solvents speeds up the reaction and the less polar solvents such as benzene favour the allylic sulfide.

The bulkier diethyl urea syn-19 (Table 3) rearranges with excess of acid to give almost exclusively the allylic sulfide anti30. With a catalytic amount of acid the ratio of pyrrolidine syn-

Scheme 8 Reagents and conditions: i, TsOH; ii, TMSOTf, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$ to room temp.

Table 3 Rearrangement of ureas 18,19 and 20 with TsOH

18, 19, 20

Starting urea	R	R^{\prime}	Conditions	Yield (\%)	Ratio	Product
syn-18	H	Et	$0.8 \mathrm{TsOH}$	95	1.3:1	syn-27:anti-28
			$\mathrm{CH}_{2} \mathrm{Cl}_{2}, 18 \mathrm{~h}$ $\mathrm{MeCN}, 90 \mathrm{~min}$	95 83	$1.3: 1$ $1.5: 1$	syn-27:anti-28
			$\mathrm{CHCl}_{3}, 2 \mathrm{~h}$	83	1:1.2	
			$\mathrm{PhH}, 45 \mathrm{~min}$ 1.9 TsOH ,	92	1:1.8	
			$\mathrm{CH}_{2} \mathrm{Cl}_{2}, 10 \mathrm{~min}$	96	1:7.0	
			$\mathrm{SOCl}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$	83	1:4.2	
syn-19	Et	Et	$\begin{aligned} & 0.8 \mathrm{TsOH}, \\ & \mathrm{CH}_{2} \mathrm{Cl}_{2}, 14 \mathrm{~h} \end{aligned}$	77	1:6	syn-29:anti-30
			$\mathrm{CHCl}_{3}, 80 \mathrm{~min}$ 1.9 TsOH ,	78	1:2.4	
syn-20	H	Ph	$\begin{aligned} & \mathrm{CH}_{2} \mathrm{Cl}_{2}, 30 \mathrm{~min} \\ & 0.8 \mathrm{TsOH}, \end{aligned}$	83	1:99	
			$\mathrm{CH}_{2} \mathrm{Cl}_{2}, 3 \mathrm{~h}$	87	3:1	syn-31 : anti-32
			$\mathrm{MeCN}, 30 \mathrm{~min}$	76	1:1.5	
			$\mathrm{CHCl}_{3}, 40 \mathrm{~min}$	98	2.5:1	
			$\mathrm{PhH}, 15 \mathrm{~min}$ 1.8 TsOH	91	1:3.3	
			$\mathrm{CH}_{2} \mathrm{Cl}_{2}, 10 \mathrm{~min}$	87	2.6:1	

syn-18

Scheme 9 Reagents: $\mathrm{TsOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$

29 to the allylic sulfide anti-30 increases as expected; however, the yield of the cyclized product syn-29 is lower than that for the monoethyl urea syn-18. This lower yield probably results from greater steric interaction of the diethyl urea group with the cyclohexyl ring.

The rearrangement of the phenyl urea syn-20 (Table 3) with TsOH gave similar yields and ratios to the ethyl urea syn-18. The cyclized product syn-31 was shown to have syn stereochemistry by nuclear Overhauser enhancement (NOE) differ-
ence spectroscopy, thereby confirming the stereospecificity of the reaction with inversion of stereochemistry at the migration terminus.

A comparison of different aromatic groups was undertaken as shown in Table 4. The para-methoxy-substituted aromatic urea anti-21 (Table 4) gave a lower ratio of the pyrrolidine anti33 compared to the allylic sulfide syn-34. This might be expected if the urea anti-21 is slightly more basic than the arylunsubstituted urea anti-20. Rearrangement of the slightly less basic urea anti-22 did not, however, lead to any significant improvement in the ratio of the two products.

We next turned our attention to the rearrangement of the corresponding carbamates 23 and sulfonamides 24. These were rearranged under the usual conditions of catalytic TsOH to give a mixture of the pyrrolidine and the allylic sulfide products.

In both cases the yield of the cyclized pyrrolidine products 37 and 39 had improved, particularly from the sulfonamide 24. The slightly lower yield of the pyrrolidine syn- 37 may be due to steric factors on bringing the phenylthio and methyl groups syn to one another. ${ }^{3}$ This is not a thermodynamic equilibrium as no interconversion of the pyrrolidine and the allylic sulfide takes place under conditions identical with those for the rearrangement.

Lewis acids are known to promote the 1,2-phenylthio shift and indeed for the simple carboxylic amide anti-17 the use of TMSOTf allowed the formation of a small but significant amount of the cyclized product anti-25. Avoidance of protic conditions should aid the cyclization by leaving the nitrogen atom available for nucleophilic attack. A comparison of the use

Table 4 Rearrangement of N-arylureas anti-20, -21 and -22 with TsOH

$20,21,22$
1

31, 33, 35
32, 34, 36

Starting urea	Ar	Conditions	Yield (\%)	Ratio	Product
anti-20	Ph	$0.8 \mathrm{TsOH}$			
anti-21	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-\mathrm{p}$	$\begin{aligned} & \mathrm{CHCl}_{3}, 2 \mathrm{~h} \\ & 0.8 \mathrm{TsOH} \end{aligned}$	68	1:1.2	anti-31 : syn-32
	$\mathrm{C}_{6} \mathrm{H}_{4}$ OMe-p	$\mathrm{CHCl}_{3}, 2 \mathrm{~h}$	45	1:10	anti-33: syn-34
anti-22	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-p$	$\begin{aligned} & 0.8 \mathrm{TsOH} \\ & \mathrm{CHCl}_{3}, 2 \mathrm{~h} \end{aligned}$	56	1:1	anti-35:syn-36

syn -3734%
anti-37 88%
anti-37 88\%
syn-23
anti-23

$+$

anti-38 62\%
syn-38 9\%
Scheme 10 Reagents and conditions: 0.8 mol equiv. $\mathrm{TsOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, 30 mm

Scheme 11 Reagents and conditions: 0.8 mol equiv. $\mathrm{TsOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, 30 min
of TMSOTf with the ureas 20, the carbamates 23 and the sulfonamides 24 is shown in Table 5.

In each case the pyrrolidine was formed in good yield and with the sulfonamide as the intramolecular nucleophile an excellent yield of the cyclized product was obtained. The mechanism for this transformation is thought to involve initial attack by the hydroxy group onto the silicon atom and displacement of the triflate group to give species 41. Formation
of the episulfonium ion $\mathbf{4 2}$ from this intermediate will leave the nitrogen atom unprotonated and available for nucleophilic attack. In addition, the less basic counter-anion, $\mathrm{CF}_{3} \mathrm{SO}_{2} \mathrm{O}^{-}$, will be less prone to remove the proton α-to the carbon-sulfur bond which would give the undesired allylic sulfide.

Scheme 12
We now have a stereospecific route to either the allylic sulfide, formed by rearrangement of the amine with excess of TsOH, or the pyrrolidine, formed by rearrangement of the corresponding sulfonamide with TMSOTf. Both of these reactions generally proceed in $>90 \%$ yield to give a single stereoisomer of the product.
These reactions can be applied to other β-hydroxy sulfides. For example, the sulfonamides syn- and anti-46 were prepared from the 2-phenylthio aldehyde 43. ${ }^{4}$ Addition of this aldehyde 43 to the anion of propiononitrile gave a mixture of the nitriles syn- and anti-44. The major isomer was assigned as having the anti configuration as predicted from the Felkin-Anh model. These stereoisomers were reduced to the amines syn- and anti45 and tosylated to give the sulfonamides syn- and anti-46. Separation was easiest at this stage and each isomer 46 was treated with TMSOTf to give the spirocyclic diamines syn- and anti-47 respectively. In each case none of the allylic sulfide was detected ($<5 \%$ allylic sulfide) and the pyrrolidines 47 were isolated in excellent yield.

As expected, the rearrangement of the free amine anti-45

Table 5 Rearrangement of amides 20, 23 and 24 with TMSOTf

31, 37, 39
32, 38, 40

	Starting material	R	Solvent	Yield (\%)	Ratio	Product
	syn-20	CONHPh	THF	84	$3.7: 1$	syn- $\mathbf{3 1}:$ anti-32
	anti-20	CONHPh	THF	78	$3.6: 1$	anti-31:syn-32
	syn-23	$\mathrm{CO}_{2} \mathrm{Et}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	94	$3.7: 1$	syn- $\mathbf{3 7}:$ anti-38
	anti-23	$\mathrm{CO}_{2} \mathrm{Et}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	98	$1.8: 1$	anti-37:syn-38
syn-24	$\mathrm{SO}_{2} \mathrm{Tol}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	99	$49: 1$	syn-39:anti-40	
anti-24	$\mathrm{SO}_{2} \mathrm{Tol}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	99	$10: 1$	anti-39:syn-40	

Scheme 13 Reagents: i, EtCN, LDA; ii, $\mathrm{LiAlH}_{4} ;$ iii, TsCl

Scheme 14 Reagent: TMSOTf

Scheme 15 Reagent: TsOH
(prepared by separating the nitriles 44 and reduction) gave no cyclized product but allowed the preparation of the allylic sulfide syn-48.
So far we have successfully addressed the issue of five-
membered cyclic amine formation with attack by the nitrogen atom on the more substituted end of the episulfonium ion. The phenylthio group migrates from the tertiary to the secondary centre. This we call a downhill migration of sulfur and in the above cases the cyclization would be referred to as a 5-endo-tet reaction. This is formally a disallowed process although these rules ${ }^{14}$ cannot strictly be applied in this case as we are dealing with the second-row element sulfur and the transition state is presumably very loose with some cationic character at the tertiary carbon.

These model studies have been carried out with a cyclohexyl group at the migration origin. This group is one which is quite likely to favour allylic sulfide formation as an endocyclic double bond in a six-membered ring will be formed. A different substitution pattern at the migration origin may well therefore further enhance the yield of the cyclized product and should allow the use of a carbamate as the nitrogen nucleophile. Of more importance in probing the generality of the cyclization we envisaged three areas which needed investigation: the cyclization with secondary to secondary phenylthio migration, the 5-exo-tet mode of cyclization, and the possibility of the formation of other ring sizes. These are described below.

Secondary to Secondary Phenylthio Migration.-When both the phenylthio and the hydroxy groups are at secondary centres, allylic sulfide formation is known to be disfavoured. ${ }^{1}$ However, the formation of cyclic ethers is possible by secondary to secondary phenylthio migration ${ }^{3}$ and takes place with inversion of stereochemistry at both the migration terminus and the migration origin. In order to probe the possibility of cyclic amine synthesis with secondary to secondary phenylthio migration we prepared the sulfonamides $\mathbf{5 2}$ starting from the 2-phenylthio aldehyde 49. ${ }^{7}$ Using the Felkin-Anh model with the phenylthio group as the largest group we would expect the anti stereochemistry to predominate in the addition of the aldehyde 49 to the anion of acetonitrile. The $3: 1$ mixture of nitriles 50 was not separated but was reduced to the corresponding amines 51 and tosylated to give the sulfonamides 52 . Separation by HPLC gave the pure major isomer of the sulfonamide 52 and the minor isomer as a 5:1 mixture. Treatment of the major isomer anti-52 with TMSOTf gave essentially a quantitative yield of the pyrrolidine anti-53. This was obtained as a single stereoisomer although an X-ray crystal structure or NOE studies could not be obtained. Rearrangement of the minor isomer (5:1 minor:
major) likewise occurred stereospecifically to give the pyrrolidine syn-53 (5:1 syn:anti). This time NOE studies could be performed and verified that the minor isomer of the sulfonamide had cyclized to the pyrrolidine syn-53. If we assume that inversion of stereochemistry takes place at both the migration terminus and the migration origin, then the minor isomer of the sulfonamide 52 does indeed have syn stereochemistry as predicted.

Scheme 16 Reagents: i, LDA; then 49; ii, LiAlH_{4}; iii, TsCl

Scheme 17 Reagent: TMSOTf
The 5-exo Mode of Cyclization.-When the phenylthio group migrates to a position outside (exo) the newly forming ring the cyclization should be easier than the endo mode. This is because the nucleophile's filled orbital can become colinear with the breaking bond of the electrophile and so can overlap to maximum effect. To test whether 5-exo amido cyclization is possible, we prepared the sulfonamide 57 starting from the 2 phenylthio ketone $54 .{ }^{15}$ Addition of acrylonitrile to the anion of ketone 54 gave recovered starting material. By use of 3bromopropiononitrile the alkylation was successful. Reduction of the nitrile group and the ketone group of compound 55 was performed simultaneously using LiAlH_{4}. This gave a $2.2: 1$ mixture of the amino alcohol 56, which was tosylated and separated by HPLC. Each isomer of the sulfonamide 57 was treated with TMSOTf to effect the rearrangement to the pyrrolidines 58 and 59. In each case cyclization took place in high yield to give a single and different isomer of the cyclic amine. This demonstrates the stereospecificity of the rearrangement. In this case it was not possible to identify which isomer was which, although it is likely that the major isomer of the sulfonamide 57 has syn stereochemistry based on a consideration of the Felkin-Anh model. The sulfonamide syn-57 would give the pyrrolidine 58 if inversion took place at both the migration origin and the migration terminus.

Attempted Six-membered-ring Formation.-By analogy with the cyclization of a hydroxy group onto an episulfonium ion

Scheme 19 Reagent: TMSOTf
and formation of a tetrahydropyran ${ }^{16}$ we expected that cyclization to the corresponding piperidines would be successful. This is likely to be the case for the exo mode of cyclization; however, we chose to investigate the rearrangement of the sulfonamide 63. There are no reported preparations of piperidines by cyclization of a nitrogen atom onto an episulfonium ion. Attack onto an episelenonium ion generated from an alkene is known to allow the formation of substituted piperidines. ${ }^{17}$

Scheme 20 Reagents: i, NaH ; ii, Bu'i ; iii, LDA, HMPA ; iv, $\mathrm{BrCH}_{2} \mathrm{CN}$; $\mathrm{v}, \mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}$; vi, TsCl

Addition of hexamethylphosphoric triamide (HMPA) was necessary to allow the alkylation of the ketone 60 to give nitrile 61. Simultaneous reduction of both the ketone and the nitrile gave a 1.3:1 ratio of the amine 62. Tosylation and separation gave the sulfonamides syn-63 and anti-63 of which the major isomer was assigned syn stereochemistry. On treatment with TMSOTf, each isomer cyclized to the five-membered ring by an exo cyclization. No six-membered ring was observed to occur by an endo cyclization. The electronic preference for endo attack at the more substituted end of the episulfonium ion has been
overcome by the preferential exo attack to give a five-membered ring. Steric factors may also play a role. To our surprise, using the same conditions as before, the phenylthio group was lost to give a mixture of the alkenes 64 and 65 . If the reaction was quenched at $-78^{\circ} \mathrm{C}$ it was possible to isolate the silyl ether 66 . This silyl ether is a likely intermediate in all the above TMSOTfmediated reactions, which warming allows formation of the episulfonium ion and hence cyclization by the nitrogen atom.

Scheme 21 Reagent: TMSOTf

66
Removal of Sulfur from the Rearrangement Products.-The sulfonamide group in the spirocyclic pyrrolidines anti-39, syn47, and anti-47 was cleaved by heating under reflux with the reducing agent red-Al $\left[\mathrm{Na}^{+}\left(\mathrm{MeOCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{2}-\mathrm{AlH}_{2}\right]^{18}$ No loss of stereochemical purity of the respective amines anti16, syn-67, and anti-67 was observed. The spirocyclic amine anti-16 was isomeric with that formed by hydrolysis of the amine syn- $\mathbf{3 1}$ with KOH .

Scheme 22 Reagents and conditions: i, red-Al, benzene, reflux

Scheme 23 Reagents: $\mathrm{KOH}, \mathrm{EtOH}$

In addition, the phenylthio group can be cleaved using Raney nickel. This allowed the preparation of the spirocyclic amine 68 from the amine anti-47.

Scheme 24 Reagents and conditions: $\mathrm{Ra}-\mathrm{Ni}, \mathrm{EtOH}$, reflux
We have previously shown ${ }^{2}$ that allylic sulfides formed by the 1,2-phenylthio shift can be oxidized and rearranged to give the corresponding allylic alcohols. In the same way, the allylic sulfides anti-14 and syn-14 were subjected to a [2,3]-sigmatropic shift. Oxidation of the sulfides to the sulfoxides was achieved using sodium perborate ${ }^{19}$ as this avoided any N -oxidation. The sulfoxides were heated with a thiophile to give the allylic alcohols anti-69 and syn-69 respectively. This rearrangement is stereospecific and so can be used to control the stereochemistry of 1,4 -chirally related centres.

Scheme 25 Reagents: i, $\mathrm{NaBO}_{3} ; \mathrm{ii},(\mathrm{MeO})_{3} \mathrm{P}$
In conclusion, we have demonstrated that amines do not participate in the rearrangement of β-hydroxy sulfides, so allowing the stereospecific formation of allylic sulfides (and hence allylic alcohols by [2,3]-sigmatropic shift). However, amides, in particular sulfonamides, may be successfully used for intramolecular nucleophilic opening of an episulfonium ion. This gives rise to cyclic and spirocyclic amines with complete stereochemical control.

Experimental

General Methods.-(2RS,3RS)-3-Hydroxy-2-methyl-3-[1-
(phenylthio)cyclohexyl]propanamide syn-8. Aq. ammonia (0.13 $\mathrm{cm}^{3}, 2.6 \mathrm{mmol}$) was added to a solution of the thioester $\operatorname{syn}-7^{2 b}$ ($102 \mathrm{mg}, 0.26 \mathrm{mmol}$) in $\mathrm{MeOH}\left(1 \mathrm{~cm}^{3}\right)$ under argon at room temperature. After 4 h at $40^{\circ} \mathrm{C}$ the mixture was poured into $\mathrm{HCl}\left(20 \mathrm{~cm}^{3} ; 0.1 \mathrm{~mol} \mathrm{dm}^{-3}\right)$ and was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(3 \times 20 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, evaporated and purified by column chromatography on silica gel (11 g) with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ ($20: 1$) as eluent to give the amide syn-8 ($55 \mathrm{mg}, 71 \%$) as needles, m.p. $146-147^{\circ} \mathrm{C} ; R_{\mathrm{f}}$ $\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(20: 1)\right] 0.26 ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3500$ and $3400\left(\mathrm{NH}_{2}\right), 3180(\mathrm{OH})$ and $1670(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.53-$ 7.48 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), $7.40-7.27$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 5.95 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$), 5.28 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$), $3.68(1 \mathrm{H}, \mathrm{d}, J 3.1, \mathrm{CHOH}), 3.30(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.87$ ($1 \mathrm{H}, \mathrm{qd}, J 7.1$ and $3.1, \mathrm{CH} \mathrm{Me}$), $1.95-1.37\left(10 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{10}\right.$) and $1.30(3 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{CHMe}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 179.52,136.98,130.23$, $129.09,128.92,74.12,61.49,41.54,31.13,30.99,25.85,21.84$ and 14.16 (Found: $\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{NO}_{2}, 192.0972 . \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~S}$ requires $\left.\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{NO}_{2}, 192.0972\right) ; m / z 192\left(36 \% \cdot \mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{NO}_{2}\right)$, $191\left(43, \mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{NO}_{2}\right), 83\left(75, \mathrm{C}_{6} \mathrm{H}_{11}\right)$ and $81\left(100, \mathrm{C}_{6} \mathrm{H}_{9}\right)$
(Found: C, $65.4 ; \mathrm{H}, 7.9 ; \mathrm{N}, 4.9 ; \mathrm{S}, 11.3 . \mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}$ requires C , $65.49 ; \mathrm{H}, 7.90 ;$ N, 4.77 ; s, 10.93%).
(1RS,2RS)-3-Amino-2-methyl-1-[1-(phenylthio)cyclohexyl]-propan-1-ol syn-9.-A solution of the amide syn-8 (29 mg, 0.1 mmol) in tetrahydrofuran (THF) was added to borane-THF complex ($0.3 \mathrm{~cm}^{3}, 0.3 \mathrm{mmol}$) under argon at $0^{\circ} \mathrm{C}$. The mixture was heated under reflux for 1 h and was quenched with water $\left(5 \mathrm{~cm}^{3}\right)$. The mixture was basified (NaOH) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 20 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, evaporated and purified by column chromatography on silica gel (4 g) with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-$ aq. $\mathrm{NH}_{3}(87: 12: 1)$ as eluent to give the amine syn-9 ($24 \mathrm{mg}, 87 \%$) as needles, m.p. $78-$ $79^{\circ} \mathrm{C} ; R_{\mathrm{f}}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-EtOH-aq. $\left.\mathrm{NH}_{3}(100: 8: 1)\right] 0.19$; $v_{\text {max }}-$ $\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3420$ and $3380\left(\mathrm{NH}_{2}\right)$ and $1580(\mathrm{Ph})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.52-7.49(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.34-7.25(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, $3.46(1 \mathrm{H}, \mathrm{d}, J 1.8, \mathrm{CHOH}), 2.78(1 \mathrm{H}, \mathrm{dd}, J 12.4$ and 4.4 , $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}\right), 2.67\left(1 \mathrm{H}, \mathrm{dd}, J 12.4\right.$ and $\left.5.0, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{N}\right), 2.26(3 \mathrm{H}, \mathrm{s}$, OH and NH_{2}), 2.18-2.08 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{Me}$), $1.93-1.13(10 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{6} \mathrm{H}_{10}\right)$ and $1.05(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CHMe}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 137.08$, 130.96, 128.74, 128.68, 76.56, 61.33, 49.13, 34.49, 31.07, 30.75, $25.98,22.05,21.93$ and 12.46 (Found: $\mathrm{M}^{+}-\mathrm{OH}, 262.1647$. $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NS}$ requires $\left.\mathrm{M}-\mathrm{OH}, 262.1629\right) ; m / z \quad 262(0.5 \%$, $\left.\mathrm{M}^{+}-\mathrm{OH}\right), 191\left(32, \mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{NO}\right), 110(54, \mathrm{PhSH})$ and 88 $\left(100, \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{NO}\right)$ (Found: C, 68.55; H, 9.2; N, 5.0; S, 11.5. $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NOS}$ requires $\mathrm{C}, 68.77 ; \mathrm{H}, 9.02 ; \mathrm{N}, 5.01 ; \mathrm{S}, 11.47 \%$).
(1RS,2RS)-3-Amino-2-methyl-1-[1-phenylthio)cyclohexyl]-propan-1-ol anti-9.-Lithium aluminium hydride ($1.73 \mathrm{~g}, 45.5$ $\mathrm{mmol})$ was added to the nitrile anti-13 $(5.0 \mathrm{~g}, 18.2 \mathrm{mmol})$ in diethyl ether ($80 \mathrm{~cm}^{3}$) under argon at $0^{\circ} \mathrm{C}$. After 5 h the mixture was poured into $\mathrm{NaOH}\left(300 \mathrm{~cm}^{3}, 0.1 \mathrm{~mol} \mathrm{dm}^{-3}\right)$ and aq. sodium potassium tartrate ($300 \mathrm{~cm}^{3} ; 0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$) was added. The ether layer was removed and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 100 \mathrm{~cm}^{3}\right)$. The combined organic phases were dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), evaporated and purified by column chromatography on silica gel (200 g) with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-\mathrm{aq}$. NH_{3} ($100: 8: 1$) as eluent to give the amine anti-9 ($3.27 \mathrm{~g}, 65 \%$) as needles, m.p. $\quad 106-108^{\circ} \mathrm{C} ; \quad R_{\mathrm{f}} \quad\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-\right.$ aq. $\quad \mathrm{NH}_{3}$ (100:8:1)] 0.30; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1565(\mathrm{NH}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $7.56-7.52(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.32-7.26(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.43(1 \mathrm{H}, \mathrm{d}, J 3.6$, $\mathrm{CHOH}), 3.12\left(1 \mathrm{H}, \mathrm{dd}, J 12.4\right.$ and $\left.3.8, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}\right)$, $2.92(1 \mathrm{H}$, dd, $J 12.4$ and $\left.5.7, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{N}\right), 2.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OH}\right.$ and $\left.\mathrm{NH}_{2}\right), 2.27-2.17$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{CHMe}), 1.89-1.21\left(10 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{10}\right)$ and $1.07(3 \mathrm{H}, \mathrm{d}, J$ 7.0, $\mathrm{CH} M e) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 137.06,131.43,128.48,128.39,80.60$, $61.20,45.63,32.96,31.16,31.04,25.85,22.01,21.93$ and 19.39 (Found: $\mathrm{M}^{+}+\mathrm{H}, 280.1759 . \mathrm{C}_{16} \mathrm{H}_{26} \mathrm{NOS}$ requires $\mathrm{M}+\mathrm{H}$, 280.1735); $m / z 280\left(0.2 \%, \mathrm{M}^{+}+\mathrm{H}\right), 192\left(54, \mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{NO}\right)$, $110(56, \mathrm{PhSH})$ and $88\left(100, \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{NO}\right)$.
(2RS,3SR)-N-Benzyl-3-hydroxy-2-methyl-3-[1-(phenylthio)cyclohexyl] propanamide anti-10.-Trimethylaluminium (0.45 $\left.\mathrm{cm}^{3}, 0.90 \mathrm{mmol}\right)$ was added to a solution of benzylamine $(0.1$ $\left.\mathrm{cm}^{3}, 0.9 \mathrm{mmol}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{~cm}^{3}\right)$ under argon at room temperature. After 25 min a solution of the ester anti-12 (212 mg , $0.69 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{~cm}^{3}\right)$ was added and the mixture was stirred at $40^{\circ} \mathrm{C}$ for $10 \mathrm{~h} . \mathrm{HCl}\left(40 \mathrm{~cm}^{3} ; 3 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right)$ was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 50 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated and the residue was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane to give the amide anti-10 ($201 \mathrm{mg}, 76 \%$) as needles, m.p. $142-144^{\circ} \mathrm{C} ; R_{f}$ [light petroleum $\left(60-80^{\circ} \mathrm{C}\right)$-ethyl acetate (21)] 0.36; $v_{\text {max }}{ }^{-}$ $\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3430(\mathrm{NH}), 3350(\mathrm{OH})$, and $1640(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.43-7.40(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.36-7.25(8 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, $6.40(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 5.27(1 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{OH}), 4.38(2 \mathrm{H}, \mathrm{d}, J 5.7$, $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 3.20(2 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{Me}$ and CHOH$), 1.94-1.11(10 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{6} \mathrm{H}_{10}\right)$ and $1.38(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CHMe}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) \quad 177.25$, $137.88,136.84,131.07,128.83,128.79,128.71,128.00,127.58$,
$79.83,70.73,43.46,38.79,30.66,29.21,25.76,21.91,21.81$ and 19.33 (Found: $\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~S}, 273.1713 . \mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{2}$ requires M - $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~S}, 273.1729$); $m / z 273$ ($1 \%, \mathrm{M}^{+}$- PhSH), 192 (57, $\left.\mathbf{M}-\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{SPh}\right), 135\left(27, \mathrm{PhCH}_{2} \mathrm{NHCOH}\right)$ and 91 (100 , PhCH_{2}) (Found: C, 72.2; H, 7.7; N, 3.6; S, 8.4. $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{2} \mathrm{~S}$ requires $\mathrm{C}, 72.02 ; \mathrm{H}, 7.62 ; \mathrm{N}, 3.65 ; \mathrm{S}, 8.36 \%$).
(2RS,3RS)-N-Benzyl-3-hydroxy-2-methyl-3-[1-(phenylthio)cyclohexyl]propanamide syn-10.-In the same way as the amide anti-10, trimethylaluminium ($0.71 \mathrm{~cm}^{3}, 1.42 \mathrm{mmol}$), benzylamine ($0.15 \mathrm{~cm}^{3}, 1.4 \mathrm{mmol}$) and the ester syn-12 (363 mg , 1.18 mmol) gave the amide syn-10 ($322 \mathrm{mg}, 71 \%$) as cubes, m.p. $131-133^{\circ} \mathrm{C} ; R_{\mathrm{f}}\left[\right.$ light petroleum $\left(60-80^{\circ} \mathrm{C}\right)$-ethyl acetate $\left.(2: 1)\right]$ $0.28 ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3360(\mathrm{NH})$ and $1655(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}^{-}}$ $\left(\mathrm{CDCl}_{3}\right) 7.47-7.43(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.39-7.21(8 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.26$ $(1 \mathrm{H}, \mathrm{t}, J 5.5, \mathrm{NH}), 4.38\left(2 \mathrm{H}, \mathrm{d}, J 5.5, \mathrm{CH}_{2} \mathrm{~N}\right), 3.68(1 \mathrm{H}, \mathrm{d}, J 3.1$, $\mathrm{CHOH}), 3.25(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.88(1 \mathrm{H}, \mathrm{dq}, J 7.1$ and $3.1, \mathrm{CHMe}$), $1.92-1.17\left(10 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{10}\right)$ and $1.30(3 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{CHMe})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 176.60,138.43,136.88,130.70,128.90,128.81$, $128.64,127.63,127.37,74.75,61.38,43.36,42.11,31.41,31.25$, 25.84, 21.96, 21.91 and 14.19 (Found: $\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}, 274.1802$. $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{2}$ requires $\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}, 274.1807$); $m / z 274$ (3%, $\mathbf{M}^{+}-\mathrm{PhS}$), 192 (29, $\mathbf{M}-\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{SPh}$), 135 (32, $\mathrm{PhCH}_{2} \mathrm{NH}-$ COH) and 91 ($100, \mathrm{PhCH}_{2}$) (Found: C, $72.0 ; \mathrm{H}, 7.5 ; \mathrm{N}, 3.6 \%$).
(2RS,3SR)-3-Benzylamino-2-methyl-1-[1-(phenylthio)cyclo-hexyl]propan-1-ol syn-11.-In the same way as the amine syn-9 the amide syn-10 ($394 \mathrm{mg}, 1.03 \mathrm{mmol}$) and borane-THF complex ($2.1 \mathrm{~cm}^{3}, 2.1 \mathrm{mmol}$) gave the amine syn-11 (248 mg, 65%) as an oil, R_{f} [light petroleum ($60-80^{\circ} \mathrm{C}$)-ethyl acetatetriethylamine (66:33:1)] 0.35; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{1} 3250\left(\mathrm{NH}_{2}\right)$, 1600 and $1580(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.53-7.48(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, 7.377.20 ($8 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 3.72 ($2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}$), 3.56 ($1 \mathrm{H}, \mathrm{d}, J 1.3$, $\mathrm{CHOH}), 2.78\left(1 \mathrm{H}\right.$, dd, $J 11.7$ and $\left.5.1, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}\right), 2.60(1 \mathrm{H}, \mathrm{dd}$, $J 11.7$ and $\left.4.6, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{N}\right), 2.34(1 \mathrm{H}, \mathrm{m}, \mathrm{CHMe}), 1.93-1.18(10$ $\left.\mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{10}\right)$ and $1.08(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CHMe}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ $140.07,137.07,131.43,128.57,128.36,128.04,126.97,77.16$, $60.94,56.84,54.24,33.19,31.41,30.92,26.00,22.12,22.01$ and 13.05 (Found: $\mathrm{M}^{+}-\mathrm{PhS}, 260.2016 . \mathrm{C}_{17} \mathrm{H}_{26} \mathrm{NO}$ requires M $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}, 260.2014$); $m / z 260\left(8 \%, \mathrm{M}^{+}-\mathrm{PhS}\right), 178$ (25, M $\left.\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{SPh}\right), 120\left(88, \mathrm{PhCH}_{2} \mathrm{NHCH}_{2}\right), 110(39, \mathrm{PhSH})$ and 91 (100, PhCH_{2}).
(2RS,3RS)- and (2RS,3SR)-3-Hydroxy-2-methyl-3-[1-(phenylthio)cyclohexyl]propiononitrile anti- and syn-13.-A solution of propiononitrile $\left(2.3 \mathrm{~cm}^{3}, 31.8 \mathrm{mmol}\right)$ in dry THF ($40 \mathrm{~cm}^{3}$) was added dropwise to a solution of lithium diisopropylamide (LDA) (34.6 mmol) in THF ($80 \mathrm{~cm}^{3}$) under argon at $-78^{\circ} \mathrm{C}$. After 40 min a solution of the aldehyde $6(6.35 \mathrm{~g}, 29 \mathrm{mmol})$ in THF ($25 \mathrm{~cm}^{3}$) and the mixture was stirred for 25 min . The solution was poured into saturated aq. ammonium chloride ($200 \mathrm{~cm}^{3}$) and was extracted with diethyl ether ($3 \times 150 \mathrm{~cm}^{3}$). The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, evaporated and purified by column chromatography on silica gel (500 g) with hexane-diethyl ether ($3: 1$) as eluent to give the ($2 \mathrm{RS}, 3 \mathrm{SR}$)nitrile syn-13 ($1.71 \mathrm{~g}, 22 \%$) as plates, m.p. $96-97^{\circ} \mathrm{C} ; R_{\mathrm{f}}$ [hexanediethyl ether (3:1)] 0.34; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2225(\mathrm{CN})$ and $1580(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.54-7.49(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.44-7.31(3 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}), 3.52(1 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CHOH}), 3.21(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.96(1 \mathrm{H}$, qn, $J 7.1, \mathrm{CHMe}), 2.02-1.24\left(10 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{10}\right)$ and $1.43(3 \mathrm{H}, \mathrm{d}, J$ 7.1, CHMe); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 136.96,129.46,129.11,122.68,74.98$, $61.57,31.65,30.47,26.28,25.75,21.79,21.76$ and 15.60 (Found: $\mathbf{M}^{+}, 275.1346 . \mathrm{C}_{16} \mathrm{H}_{21}$ NOS requires $\mathrm{M}, 275.1344$); $m / z 275(6 \%$, $\left.\mathrm{M}^{+}\right), 191\left(32, \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{SPh}\right)$ and $110(100, \mathrm{PhSH})$ (Found: C, 69.6; $\mathrm{H}, 7.65 ; \mathrm{N}, 5.0 ; \mathrm{S}, 11.7 . \mathrm{C}_{16} \mathrm{H}_{21}$ NOS requires $\mathrm{C}, 69.78 ; \mathrm{H}, 7.69$; $\mathrm{N}, 5.09 ; \mathrm{S}, 11.64 \%$), and the (2RS,3RS)-nitrile anti-13 (5.61 g, 71%) as prisms, m.p. $117-118^{\circ} \mathrm{C} ; R_{\mathrm{f}}$ [hexane-diethyl ether (3:1)] 0.14; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2230(\mathrm{CN})$ and $1580(\mathrm{Ph})$;
$\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.49-7.45(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.41-7.29(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, $3.27(1 \mathrm{H}, \mathrm{q}, J 7.2, \mathrm{CHMe}), 3.11\left[1 \mathrm{H}, \mathrm{d}, J 3.3, \mathrm{CHOH}\left(\mathrm{D}_{2} \mathrm{O}\right.\right.$ shake reveals d, $J 0.9)], 2.98(1 \mathrm{H}, \mathrm{d}, J 4.1, \mathrm{OH}), 2.01-1.19(10 \mathrm{H}$, $\mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{10}$) and 1.44 ($3 \mathrm{H}, \mathrm{d}, J 7.2, \mathrm{CHMe}$); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 136.98$, 129.46, 129.32, 128.99, 121.05, 76.62, 60.07, 29.85, 29.77, 26.90, 25.83, 21.54 and 18.40 (Found: $\mathbf{M}^{+}, 275.1354 . \mathrm{C}_{16} \mathrm{H}_{21}$ NOS requires $\mathrm{M}, 275.1344)$; $m / z 275\left(14 \%, \mathrm{M}^{+}\right), 191\left(42, \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{SPh}\right)$ and $110(100, \mathrm{PhSH})$.
(2RS,3RS)-3-(Cyclohex-1-enyl)-2-methyl-3-(phenylthio)propylamine anti-14.-A solution of the amine syn-9 ($279 \mathrm{mg}, 1.0$ mmol) and $\mathrm{TsOH}(363 \mathrm{mg}, 1.9 \mathrm{mmol})$ in benzene $\left(5 \mathrm{~cm}^{3}\right)$ was heated under reflux in a foil-wrapped flask under argon for 10 \min. Water $\left(50 \mathrm{~cm}^{3}\right)$ was added, the mixture was basified with NaOH and was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 80 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, evaporated and purified by column chromatography on silica gel (20 g) with ($100: 8: 1$) $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-\mathrm{aq} . \mathrm{NH}_{3}$ as eluent to give the allylic sulfide anti-14 ($245 \mathrm{mg}, 94 \%$) as an oil, $R_{\mathrm{f}}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}\right.$-aq. NH_{3} ($100: 8: 1$)] $0.36 ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3370(\mathrm{NH}), 1650$ $(\mathrm{C}=\mathrm{C}), 1600$ and $1580(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.36-7.29(2 \mathrm{H}, \mathrm{m}$, Ph), 7.27-7.16(3 H, m, Ph), 5.18-5.16(1 H, m, HC=C), 3.37 (1 H, d, $J 10.4, \mathrm{CHSPh}$), 3.08 (1 H , dd, $J 13.0$ and $3.5, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}$), 2.84, dd, $J 13.0$ and $\left.6.5, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{N}\right), 2.29-2.06(3 \mathrm{H}, \mathrm{m}, \mathrm{HCC}=\mathrm{C}$ and NH_{2}), 1.93-1.40 ($8 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ Me and $\mathrm{C}_{4} \mathrm{H}_{7}$) and $0.94(3 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 6.8, $\mathrm{CH} M e) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 135.66,134.80,133.36,128.31,126.88$, $126.24,61.88,45.86,37.30,25.14,23.82,22.44$ and 16.35 (Found: $\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~N}$, 203.0885. $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~S}$ requires $\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~N}$, 203.0895); m/z $203\left(2 \%, \mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~N}\right), 152(100, \mathrm{M}-\mathrm{PhS})$ and $109(41, \mathrm{PhS})$.
(2RS,3SR)-3-(Cyclohex-1-enyl)-2-methyl-3-(phenylthio)propylamine syn-14.-In the same way as the allylic sulfide anti-14, the amine anti-9 $(300 \mathrm{mg}, 1.07 \mathrm{mmol})$ and $\mathrm{TsOH}(385 \mathrm{mg}, 2.02$ mmol) gave, after purification by column chromatography on silica gel (25 g) with ($100: 8: 1$) $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-$ aq. NH_{3} as eluent, the allylic sulfide syn-14 ($280 \mathrm{mg}, 99 \%$) as an oil R_{f} $\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-EtOH-aq. $\left.\mathrm{NH}_{3}(100: 8: 1)\right] \quad 0.48 ; \quad v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ $3360(\mathrm{NH})$ and $1580(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.34-7.15(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, 5.29-5.24 (1 H, m, HC=C), $3.41(1 \mathrm{H}, \mathrm{d}, J 9.8, \mathrm{C} H \mathrm{SPh}), 2.75$ ($1 \mathrm{H}, \mathrm{dd}, J 13.0$ and 4.1, $\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}$), $2.51(1 \mathrm{H}, \mathrm{dd}, J 13.0$ and 6.8 , $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{N}\right), 2.30-2.23(1 \mathrm{H}, \mathrm{m}, \mathrm{HCC}=\mathrm{C}), 1.93-1.39(8 \mathrm{H}, \mathrm{m}$, CH Me and $\mathrm{C}_{4} \mathrm{H}_{7}$) and $1.17(3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CHMe})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ $135.90,135.20,133.03,128.34,126.72,125.974,62.49,46.36$, 37.62, 25.17, 24.26, 22.66 and 16.04 (Found: $\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~N}$, 203.0908. $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~S}$ requires $\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~N}$, 203.0895); $m / z 203$ $\left(2 \%, M-\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~N}\right), 152(100, \mathrm{M}-\mathrm{PhS})$ and $110(27, \mathrm{PhSH})$.
(2RS,3RS)-N-Benzyl-3-(cyclohex-1-enyl)-2-methyl-3-(phenylthio)propylamine anti-15.-In the same way as the amine anti14, the amine $\operatorname{syn}-11(0.116 \mathrm{~g}, 0.31 \mathrm{mmol})$ and $\mathrm{TsOH}(0.12 \mathrm{~g}$, 0.63 mmol) in benzene ($2 \mathrm{~cm}^{3}$) gave the allylic sulfide anti-15 (97 $\mathrm{mg}, 88 \%$) as an oil, R_{f} [light petroleum ($60-80^{\circ} \mathrm{C}$)-ethyl acetate-triethylamine $\quad(66: 33: 1)] \quad 0.56 ; \quad v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 1600 and $1580(\mathrm{Ph}) ; \delta_{\mathrm{H}}(\mathrm{CDCl})_{3} 7.36-7.16(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.20$ ($1 \mathrm{H}, \mathrm{brs}, \mathrm{CH}=\mathrm{C}$), 3.81 ($2 \mathrm{H}, \mathrm{ABq}, J 13.3, \mathrm{CH}_{2} \mathrm{Ph}$), $3.44(1 \mathrm{H}, \mathrm{d}, J$ $10.0, \mathrm{CHSPh}), 2.99\left(1 \mathrm{H}, \mathrm{dd}, J 11.9\right.$ and $\left.4.0, \mathrm{CHCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}\right), 2.68$ (1 H, dd, $J 11.9$ and $6.9, \mathrm{CHCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{N}$), $2.24(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}), 1.94$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{Me}$), 1.90-1.41 ($8 \mathrm{H}, \mathrm{m}, \mathrm{C}_{4} \mathrm{H}_{8}$) and $0.96(3 \mathrm{H}, \mathrm{d}, J$ 6.8, $\mathrm{CH} M e) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 140.68,135.98,135.04,133.13,128.32$, $128.30,128.08,126.79,126.75,126.12,62.37,54.27,53.59,35.52$, 25.18, 24.06, 22.69, 22.47 and 17.15 (Found: $\mathrm{M}^{+}-\mathrm{PhS}$, 242.1931. $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}$ requires $\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}, 242.1908$); $m / z 242$ ($26 \%, \mathrm{M}-\mathrm{PhS}$), 120 ($100, \mathrm{PhCH}_{2} \mathrm{NHCH}_{2}$), 110 (27, PhSH) and 91 (52, PhCH_{2}).
(3RS,4RS)-3-Methyl-4-(phenylthio)-1-azaspiro[4.5]decane syn-16.-Method A (aminomercuriation). A solution of the
amine anti-14 ($28 \mathrm{mg}, 0.107 \mathrm{mmol}$) in THF ($0.1 \mathrm{~cm}^{3}$) was added to a mixture of mercury(II) acetate ($36 \mathrm{mg}, 0.11 \mathrm{mmol}$) in THFwater $(1: 1)\left(1.0 \mathrm{~cm}^{3}\right)$ under argon at $30^{\circ} \mathrm{C}$. After 4 h , a solution of sodium borohydride ($4 \mathrm{mg}, 0.11 \mathrm{mmol}$) in $\mathrm{NaOH}\left(0.2 \mathrm{~cm}^{3}\right.$; 10% was added. Water ($20 \mathrm{~cm}^{3}$) was added and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 25 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, evaporated and purified by column chromatography on silica gel (7 g) with ($120: 8: 1$) $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-$ aq. NH_{3} as eluent to give the amine syn-16 $(17 \mathrm{~g}, 61 \%)$ as an oil, $R_{\mathrm{f}}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}\right.$-aq. $\left.\mathrm{NH}_{3}(120: 8: 1)\right]$ $0.37 ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3300(\mathrm{NH})$ and $1580(\mathrm{Ph}) ; \delta_{\mathrm{H}^{-}}$ $\left(\mathrm{CDCl}_{3}\right) 7.38-7.13(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.40(1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{C} H \mathrm{SPh})$, $3.31\left(1 \mathrm{H}\right.$, dd, $J 11.0$ and $\left.7.4, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}\right), 2.78(1 \mathrm{H}$, dd, $J 11.0$ and $\left.7.0, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{N}\right), 2.72-2.61(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{Me}), 1.81-1.51(11 \mathrm{H}, \mathrm{m}$, NH and $\mathrm{C}_{6} \mathrm{H}_{10}$) and $1.11(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CHMe}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ 137.64, 129.32, 128.83, 125.70, 65.33, 61.82, 51.52, 37.64, 36.56, $32.39,25.43,23.37,22.40$ and 16.86 (Found: $\mathbf{M}^{+}, 261.1530$. $\mathrm{C}_{16} \mathrm{H}_{23}$ NS requires M, 261.1551); $m / z 261$ ($24 \%, \mathrm{M}$), 152 (30 , M - PhS), 111 (100) and 110 ($50, \mathrm{PhSH}$).

Method B (hydrolysis of urea). A 5% solution of KOH (100 mg) in water ($2 \mathrm{~cm}^{3}$) was added to the urea syn-31 $(20 \mathrm{mg}, 0.05$ $\mathrm{mmol})$. Ethanol $\left(2 \mathrm{~cm}^{3}\right)$ was added and the mixture was refluxed for $24 \mathrm{~h} . \mathrm{HCl}\left(0.1 \mathrm{~cm}^{3} ; 3 \mathrm{~mol} \mathrm{dm}^{-3}\right)$ was added, and the mixture was adjusted to $\mathrm{pH} 9-10$ (Universal indicator paper) with $\mathrm{Na}_{2} \mathrm{CO}_{3}\left(10 \mathrm{~cm}^{3}\right)$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 20 \mathrm{~cm}^{3}\right)$. The combined extracts were dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), evaporated, and purified by column chromatography on silica gel (5 g) with (150:8:1) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-EtOH-aq. NH_{3} as eluent to give the amine $\operatorname{syn}-16(7 \mathrm{mg}, 51 \%)$ as an oil, characterization as in Method A.
(3RS,4SR)-3-Methyl-4-(phenylthio)-1-azaspiro[4.5]decane anti-16.-Red-Al $\left(42 \mathrm{~cm}^{3}, 0.3 \mathrm{mmol}\right)$ was added to a mixture of sulfonamide anti-39 ($31 \mathrm{mg}, 0.075 \mathrm{mmol}$) in benzene $\left(1 \mathrm{~cm}^{3}\right)$ under argon at room temperature and the mixture was heated under reflux under argon. After 5 h , dil. $\mathrm{NaOH}\left(10 \mathrm{~cm}^{3} ; 0.2 \mathrm{~mol}\right.$ dm^{-3}) and aq. sodium potassium tartrate ($5 \mathrm{~cm}^{3} ; 0.2 \mathrm{~mol} \mathrm{dm}^{-3}$) were added and the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20$ $\left.\mathrm{cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, evaporated, and purified by column chromatography on silica gel (9 g) with (100:8:1) $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-$ aq. NH_{3} as eluent to give the amine anti-16 ($13 \mathrm{mg}, 67 \%$) as an oil, $R_{\mathrm{f}}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-\mathrm{aq} . \mathrm{NH}_{3}\right.$ (150:8:1)] 0.28; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} \quad 1580(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 7.49-7.42 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.36-7.17 (3 H, m, Ph), 4.20 ($1 \mathrm{H}, \mathrm{dd}, J$ 11.3 and $\left.8.6, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}\right), 2.80(1 \mathrm{H}, \mathrm{d}, J 10.7, \mathrm{C} H \mathrm{SPh}), 2.69(1 \mathrm{H}$, dd, $J 11.3$ and 8.6, $\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{N}$), 2.32-2.16($1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{Me}$), $1.78-$ $1.53\left(10 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{10}\right)$ and $1.13(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CHMe})$ (Found: $\mathrm{M}^{+}, 261.1553 . \mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NS}$ requires $\mathrm{M}, 261.1551$); $\mathrm{m} / \mathrm{z} 261$ (34%, M), 111 (100) and 110 (30, PhSH).
(2RS,3SR)-N\{3-Hydroxy-2-methyl-3-[1-(phenylthio)cyclohexyl]propyl\}acetamide syn-17.-Acetyl chloride $\left(0.06 \mathrm{~cm}^{3}\right.$, $0.86 \mathrm{mmol})$ was added to a solution of the amine syn $-9(200 \mathrm{mg}$, 0.72 mmol) and pyridine ($0.03 \mathrm{~cm}^{3}, 0.36 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($5 \mathrm{~cm}^{3}$) under argon at $0^{\circ} \mathrm{C}$. After 5 h , water ($40 \mathrm{~cm}^{3}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~cm}^{3}\right)$ were added, the mixture was basified with aq. $\mathrm{NaOH}\left(2 \mathrm{~cm}^{3} ; 10 \%\right)$, the organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \times 40 \mathrm{~cm}^{3}\right)$. The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, evaporated and purified by column chromatography on silica gel (28 g) with (110:8:1) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-EtOH-aq. NH_{3} as eluent to give the amide syn-17 ($168 \mathrm{mg}, 73 \%$) as an oil, $R_{\mathrm{f}}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}\right.$-aq. NH_{3} (100:8:1)] 0.38; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3610(\mathrm{OH}), 3440$ and 3400 $(\mathrm{NH}), 1600(\mathrm{C}=\mathrm{O})$ and $1520 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.51-7.47(2 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}), 7.37-7.28$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 5.88 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}$), $3.42-3.34(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}\right), 3.31(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.30(1 \mathrm{H}, \mathrm{d}, J 1.4, \mathrm{CHOH})$, $2.96\left(1 \mathrm{H}, \mathrm{dt}, J 9.6\right.$ and $\left.4.8, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{N}\right), 2.14-2.12(1 \mathrm{H}$, sym. m, CHMe), 1.88 (3 H , s. COMe), $1.87-1.69\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{4}\right.$), $1.60-$
$1.49\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 1.33-1.23\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{2}\right)$ and $1.00(3 \mathrm{H}, \mathrm{d}, J$ 6.8, CHMe$) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 170.62,136.99,130.53,128.95,128.79$, $74.53,62.14,46.22,32.64,31.02,30.75,26.05,23.18,22.04,21.83$ and 12.70 (Found: $\mathrm{M}^{+}-\mathrm{PhS}, 212.1660 . \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{NO}_{2}$ requires M - $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}, 212.1651$); $m / z 212\left(14 \%, \mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}\right)$, 191 (58, $\left.\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{SPh}\right), 130\left(100, \mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{SPh}\right),(62, \mathrm{PhSH})$ and 81 (76, $\mathrm{C}_{6} \mathrm{H}_{9}$).
(2RS,3RS)-N-\{3-Hydroxy-2-methyl-3-[1-(phenylthio)cyclohexyl]propyl\}acetamide anti-17.-In the same way as the amide syn-17, the amine anti-9 ($140 \mathrm{mg}, 0.5 \mathrm{mmol}$) and acetyl chloride ($0.04 \mathrm{~cm}^{3}, 0.55 \mathrm{mmol}$) gave, after purification by column chromatography on silica gel $(25 \mathrm{~g})$ with $(300: 8: 1) \mathrm{CH}_{2} \mathrm{Cl}_{2}-$ $\mathrm{EtOH}-$ aq. NH_{3} as eluent, the amide anti-17 ($136 \mathrm{mg}, 84 \%$) as an oil, $R_{\mathrm{f}}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-\right.$ aq. $\left.\mathrm{NH}_{3}(100: 8: 1)\right] 0.51 ; \nu_{\text {max }}{ }^{-}$ (film) $/ \mathrm{cm}^{-1} 3300(\mathrm{OH}$ and NH$)$ and $1630(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $7.50-7.46$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.39-7.29 (3 H, m, Ph), 6.35 (1 H , br t, J $2.9, \mathrm{NH}), 3.66-3.21(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.37\left(2 \mathrm{H}, \mathrm{t}, J 5.7, \mathrm{CH}_{2} \mathrm{~N}\right)$, $3.12(1 \mathrm{H}, \mathrm{d}, J 4.3, \mathrm{CHOH}), 2.05-1.94\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{2}\right), 1.96(3 \mathrm{H}$, s, COMe), $1.83-1.18\left(9 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{Me}\right.$ and $\left.\mathrm{C}_{6} \mathrm{H}_{8}\right)$ and $0.88(3 \mathrm{H}$, d, J 7.0, CHMe) (Found: $\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NO}, 221.0993$. $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{OS}$ requires $\left.\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NO}, 221.1000\right) ; m / z 221(0.1 \%$, $\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NO}$), $212(27, \mathrm{M}-\mathrm{PhS}), 192\left(42, \mathrm{C}_{6} \mathrm{H}_{11} \mathrm{SPh}\right)$ and $130\left(100, \mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{SPh}\right)$.

Rearrangement of (2RS,3RS)-N-\{3-Hydroxy-2-methyl-3-[1(phenylthio)cyclohexyl] propyl\}acetamide anti-17.-TMSOTf ($19.5 \mathrm{~cm}^{3}, 0.1 \mathrm{mmol}$) was added to a solution of the amide anti$17(32 \mathrm{mg}, 0.1 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1.0 \mathrm{~cm}^{3}\right)$ under argon at $-78^{\circ} \mathrm{C}$. The solution was allowed to warm slowly to room temperature and was stirred at room temperature for 15 h . Water $\left(20 \mathrm{~cm}^{3}\right)$ was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 20 \mathrm{~cm}^{3}\right)$. The combined extracts were dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), evaporated and purified by column chromatography on silica gel (27 g) with ($200: 8: 1$) $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-\mathrm{aq} . \mathrm{NH}_{3}$ as eluent to give the pyrrolidine anti-25 $(10 \mathrm{mg}, 33 \%)$ as an oil, R_{f} $\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-\right.$ aq. $\left.\mathrm{NH}_{3}(200: 8: 1)\right] 0.32 ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $1625(\mathrm{C}=\mathrm{O})$ and $1580(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.50-7.18(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, $3.83\left(1 \mathrm{H}, \mathrm{dd}, J 10.2\right.$ and $\left.6.9, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}\right), 3.42(1 \mathrm{H}, \mathrm{d}, J 4.4$, CHSPh), 3.12, (1 H , dd, $J 10.2$ and $4.3, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{N}$), 2.91-2.70 ($2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{2}$), 2.34-2.25 (1 H, sym. m, CHMe), $2.03(3 \mathrm{H}$, s, COMe), 1.91-1.21 ($8 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{8}$) and $1.13(3 \mathrm{H}, \mathrm{d}, J 7.1$, CHMe) (Found: $\mathrm{M}^{+}, 303.1682 . \mathrm{C}_{18} \mathrm{H}_{25}$ NOS requires M , 303.1657); $m / z 303(15 \%, \mathrm{M}), 194(100, \mathrm{M}-\mathrm{PhS})$ and $110(59$, $\mathrm{PhSH})$, and the allylic sulfide syn-26 (19 mg, 63%) as an oil, R_{f} $\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-\right.$ aq. $\left.\mathrm{NH}_{3}(200: 8: 1)\right] 0.27 ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $3280(\mathrm{NH}), 1635(\mathrm{C}=\mathrm{O})$ and $1545(\mathrm{NH}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.35-7.17$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.56(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 5.28(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{HC}=\mathrm{C}), 3.38-$ $3.29\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}\right), 3.32(1 \mathrm{H}, \mathrm{d}, J 9.0, \mathrm{C} H \mathrm{SPh}), 3.09-2.98$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{N}\right), 2.29-2.20(1 \mathrm{H}, \mathrm{m}, \mathrm{HCC}=\mathrm{C}), 2.06-1.40(8 \mathrm{H}$, $\mathrm{m}, \mathrm{CHMe}$ and $\mathrm{C}_{4} \mathrm{H}_{7}$), $1.95(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe})$ and $1.12(3 \mathrm{H}, \mathrm{d}, J$ 6.7, CHMe) (Found: $\mathrm{M}^{+}, 303.1679 . \mathrm{C}_{18} \mathrm{H}_{25}$ NOS requires M , 303.1657); $m / z 303(1 \%, M), 194(100, M-\mathrm{PhS})$ and $135(84$, $\mathrm{C}_{10} \mathrm{H}_{15}$).
(2RS,3SR)-N-Ethyl-N'-\{3-hydroxy-2-methyl-3-[1-(phenylthio)cyclohexyl]propyl \}urea syn-18.-Ethyl isocyanate (0.046 $\left.\mathrm{cm}^{3}, 0.58 \mathrm{mmol}\right)$ was added to a solution of the amine syn-9 (148 $\mathrm{mg}, 0.53 \mathrm{mmol})$ in dry THF $\left(2 \mathrm{~cm}^{3}\right)$ at room temperature. After 18 h , the solvent was evaporated off under reduced pressure and the residue was purified by column chromatography on silica gel (15 g) with ($300: 8: 1$) $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-$ aq. NH_{3} as eluent to give the urea syn-18 ($181 \mathrm{mg}, 97 \%$) as a foam, $R_{\mathrm{f}}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2-}\right.$ EtOH-aq. $\left.\mathrm{NH}_{3}(150: 8: 1)\right] 0.38 ; v_{\text {max }}\left(\mathrm{CHBr}_{3}\right) / \mathrm{cm}^{-1} 3400(\mathrm{OH}$ and NH$), 1660(\mathrm{C}=\mathrm{O})$ and $1530(\mathrm{NH}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.54-7.48$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), $7.40-7.30(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.73(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 6.0, \mathrm{NH})$, $4.37(1 \mathrm{H}, \mathrm{brt}, J 6.0, \mathrm{NH}), 3.42(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}$ and CHOH$), 3.27$ $\left(1 \mathrm{H}, \mathrm{dt}, J 13.5\right.$ and $\left.7.5, \mathrm{MeCHCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}\right), 3.19-3.08(2 \mathrm{H}, \mathrm{m}$,
$\left.\mathrm{NCH}_{2} \mathrm{Me}\right), 2.94\left(1 \mathrm{H}, \mathrm{dt}, J 13.5\right.$ and $\left.5.0, \mathrm{MeCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{N}\right), 2.17-$ $2.07(1 \mathrm{H}, \mathrm{m}, \mathrm{CHMe}), 2.00-1.19\left(10 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{10}\right), 1.11(3 \mathrm{H}, \mathrm{t}, J$ $7.0, \mathrm{NCH}_{2} \mathrm{Me}$) and 1.01 ($3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CHMe}$) (Found: $\mathrm{M}^{+}-$ PhS , 241.1903. $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}, 241.1916$); $m / z 241(8 \%, \mathrm{M}-\mathrm{PhS}), 191\left(40, \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{SPh}\right), 159(100, \mathrm{M}-$ $\left.\mathrm{C}_{6} \mathrm{H}_{10} \cdot \mathrm{SPh}\right)$ and $81\left(78, \mathrm{C}_{6} \mathrm{H}_{9}\right)$.

Rearrangement of (2RS,3SR)-N-Ethyl-N'-\{3-hydroxy-2-methyl-3-[1-(phenylthio)cyclohexyl]propyl\}urea syn-18.-In the same way as the allylic sulfide anti-26, the urea syn-18 (35 $\mathrm{mg}, 0.1 \mathrm{mmol}$) and $\mathrm{TsOH}(35 \mathrm{mg}, 0.19 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1 \mathrm{~cm}^{3}\right)$ gave the pyrrolidine syn-27 ($4 \mathrm{mg}, 12 \%$) as an oil, $R_{\mathrm{f}}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ $\left.\mathrm{EtOH}-\mathrm{aq} . \mathrm{NH}_{3}(150: 8: 1)\right] \quad 0.48 ; \quad v_{\text {max }}\left(\mathrm{CHBr}_{3}\right) / \mathrm{cm}^{1} 3455$ (NH) and $1635(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.44-7.39(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, 7.30-7.23 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), $7.20-7.13(1 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.00(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, NH), 3.87 ($1 \mathrm{H}, \mathrm{d}, J 4.8, \mathrm{CHSPh}$), 3.34-3.07 (4 H, m, $\left.2 \times \mathrm{NCH}_{2}\right), 2.92\left(1 \mathrm{H}, \mathrm{td}, J 13.2\right.$ and $\left.3.6, \mathrm{C}_{6} \mathrm{H}\right), 2.82-2.72(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CHMe}), 2.54\left(1 \mathrm{H}, \mathrm{td}, J 13.2\right.$ and $\left.4.2, \mathrm{C}_{6} \mathrm{H}\right), 2.04-1.98(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{6} \mathrm{H}\right), 1.80-1.24\left(7 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{7}\right), 1.12\left(3 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{NCH}_{2} \mathrm{Me}\right)$ and $1.01(3 \mathrm{H}, \mathrm{d}, J \mathbf{6 . 5}, \mathrm{CHMe})$ (Found: $\mathrm{M}^{+}, 332.1969$. $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{OS}$ requires $\mathrm{M}, 332.1934$); $m / z 332$ (13%, M), 223 (100, M - PhS), 152 (77, M - EtNCO) and 111 (64), and the allylic sulfide anti- $28(28 \mathrm{mg}, 84 \%)$ as an oil, $R_{\mathrm{f}}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ EtOH-aq. $\left.\mathrm{NH}_{3}(150: 8: 1)\right] \quad 0.40 ; \quad v_{\max }\left(\mathrm{CHBr}_{3}\right) / \mathrm{cm}^{-1} 3445$ $(\mathrm{NH}), 3360(\mathrm{NH}), 1660(\mathrm{C}=\mathrm{O})$ and $1530(\mathrm{NH}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 7.34-7.20 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), $5.17(1 \mathrm{H}$, br s, $\mathrm{HC}=\mathrm{C}), 4.73(2 \mathrm{H}$, br s, $2 \times \mathrm{NH}), 3.52-3.41\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{CH}_{\mathrm{B}} \mathrm{N}\right), 3.32-3.08(3 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}$ and $\left.\mathrm{NCH}_{2} \mathrm{Me}\right), 3.30(1 \mathrm{H}, \mathrm{d}, J 10.4, \mathrm{CHSPh}), 2.28-$ $2.21(1 \mathrm{H}, \mathrm{m}, \mathrm{HCC}=\mathrm{C}), 1.93-1.43\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CHMe}\right.$ and $\left.\mathrm{C}_{4} \mathrm{H}_{7}\right)$, $1.11\left(3 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{NCH}_{2} \mathrm{Me}\right)$ and $0.91(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CHMe})$ (Found: $\left.\mathbf{M}^{+}, 332.1937\right) ; m / z 332(0.3 \%, \mathbf{M}), 223(100, \mathrm{M}-\mathrm{PhS})$ and 101 (44, CH_{2} NHCONHEt).
(2RS,3SR)-N,N-Diethyl-N'-\{3-hydroxy-2-methyl-3-[1-(phenylthio)cyclohexyl]propyl \}urea syn-19. $-N, N$-Diethylcarbamoyl chloride $\left(0.029 \mathrm{~cm}^{3}, 0.23 \mathrm{mmol}\right)$ was added to a solution of the amine $\operatorname{syn}-9(58 \mathrm{mg}, 0.21 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1.5 \mathrm{~cm}^{3}\right)$ under nitrogen at room temperature. After 23 h , the solvent was evaporated off under reduced pressure and the residue was purified by column chromatography on silica gel (10 g) with ($150: 8: 1$) $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}$-aq. NH_{3} as eluent to give the urea syn-19 (47 mg, 60\%) as an oil, $R_{f}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-\right.$ aq. NH_{3} ($150: 8: 1$)] $0.37 ; v_{\max }\left(\mathrm{CHBr}_{3}\right) / \mathrm{cm}^{-1} 3470$ and $3430(\mathrm{OH}$ and $\mathrm{NH})$ and $1630(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.53-7.48(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, $7.36-7.25(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.83(1 \mathrm{H}, \mathrm{br}$ t $, J 5.0, \mathrm{NH}), 3.56(1 \mathrm{H}, \mathrm{d}, J$ $3.0, \mathrm{CHOH}), 3.40-3.21\left(1 \mathrm{H}, \mathrm{m}, \mathrm{MeCHCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}\right), 3.18[4 \mathrm{H}, \mathrm{q}$, $\left.J 7.0, \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2}\right], 3.02\left(1 \mathrm{H}, \mathrm{dt}, J 13.5\right.$ and $\left.4.5, \mathrm{MeCHCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{N}\right)$, 2.25-2.10 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{Me}), 2.03-1.49\left(8 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{7}\right.$ and OH$)$, $1.35-1.18\left(3 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{3}\right), 1.08\left[6 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{Me}\right)_{2}\right]$ and $1.03\left(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CHMe}\right.$) (Found: $\mathrm{M}^{+}-\mathrm{Et}_{2} \mathrm{NH}, 305.1445$. $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}$ requires $\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{~N}, 305.1449$); m/z 305 $\left(0.1 \%, \mathbf{M}-\mathrm{Et}_{2} \mathrm{NH}\right), 269(13, \mathbf{M}-\mathrm{SPh}), 187$ (42, $\mathbf{M}-$ $\left.\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{SPh}\right)$ and $100\left(100, \mathrm{Et}_{2} \mathrm{NCO}\right)$.

Rearrangement of (2RS,3SR)-N,N-Diethyl $\mathrm{N}^{\prime}-\{3-$ Hydroxy-2-methyl-3-[1-(phenylthio)cyclohexyl]propyl\}urea syn-19.-In the same way as the allylic sylfide anti-26, the urea syn-19 (23 $\mathrm{mg}, 0.06 \mathrm{mmol})$ and $\mathrm{TsOH}(9.3 \mathrm{mg}, 0.05 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(0.7$ cm^{3}) gave the pyrrolidine syn- $29\left(5 \mathrm{mg}, 23 \%\right.$) as an oil, R_{f} $\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-\right.$ aq. $\left.\mathrm{NH}_{3}(300: 8: 1)\right] 0.39 ; v_{\text {max }}\left(\mathrm{CHBr}_{3}\right) / \mathrm{cm}^{-1}$ $1615(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.47-7.40(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.33-7.24$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.22-7.14(1 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.87(1 \mathrm{H}, \mathrm{d}, J 4.5, \mathrm{CHSPh})$, 3.37-3.18($3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}$ and $\mathrm{NCH}_{2}{ }^{\mathrm{A}} \mathrm{Me}$), 3.10-2.95 ($3 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}$ and $\left.\mathrm{NCH}_{2}{ }^{\mathrm{B}} \mathrm{Me}\right), 2.86-2.72(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{Me}), 2.44$ $\left(1 \mathrm{H}, \mathrm{td}, J 13.1\right.$ and $\left.3.9, \mathrm{C}_{6} \mathrm{H}\right), 2.00-1.90\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}\right), 1.82-1.20$ $\left(8 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{8}\right), 1.12\left[6 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{Me}\right)_{2}\right]$ and $1.03(3 \mathrm{H}$, d, J6.8, CHMe) (Found: $\mathrm{M}^{+}, 360.2211 . \mathrm{C}_{21} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{OS}$ requires M, 360.2235); $m / z 360(10 \%, \mathrm{M}), 251(52, \mathrm{M}-\mathrm{PhS})$ and 100
($100, \mathrm{Et}_{2} \mathrm{NCO}$), and the allylic sulfide anti- $30(12 \mathrm{mg}, 55 \%$) as an oil, $R_{\mathrm{f}}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-EtOH-aq. NH_{3} (200:8:1)] 0.38; $v_{\text {max }}{ }^{-}$ $\left(\mathrm{CHBr}_{3}\right) / \mathrm{cm}^{-1} 3475(\mathrm{NH})$ and $1630(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.38-$ $7.32(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.30-7.21(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.17(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{HC}=\mathrm{C})$, $4.76(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 6.0, \mathrm{NH}), 3.55(1 \mathrm{H}, \mathrm{dt}, J 14.0$ and 5.5 , CH$\left.\mathrm{MeCH}_{\mathrm{A}} \mathrm{CH}_{\mathrm{B}} \mathrm{N}\right), 3.41\left(1 \mathrm{H}, \mathrm{dt}, J 14.0\right.$ and $6.0, \mathrm{CHMeCH}_{\mathrm{A}^{-}}$ $\left.\mathrm{CH}_{\mathrm{B}} \mathrm{N}\right), 3.26\left[5 \mathrm{H}, \mathrm{m}, \mathrm{CHSPh}\right.$ and $\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{Me}\right)_{2}$], 2.33-2.20 (1 $\mathrm{H}, \mathrm{m}, \mathrm{HCC}=\mathrm{C}$), $2.00-1.41\left(8 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{Me}\right.$ and $\mathrm{C}_{4} \mathrm{H}_{7}$), 1.13 [6 $\mathrm{H}, \mathrm{t}, J 7.2, \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{Me}\right)_{2}$] and $0.93(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CH} M e)$ (Found: M ${ }^{+}, 360.2243$); m/z $360(0.2 \%$, M), 251 ($51, \mathrm{M}-\mathrm{PhS}$) and $100\left(100, \mathrm{Et}_{2} \mathrm{NCO}\right)$.
(2RS,3SR)-N-\{3-Hydroxy-2-methyl-3-[1-(phenylthio)cyclohexyl]propyl $\}$ - N^{\prime}-phenylurea syn-20.-Phenyl isocyanate (0.03 $\mathrm{cm}^{3}, 0.28 \mathrm{mmol}$) was added to a solution of the amine syn- 9 (72 $\mathrm{mg}, 0.26 \mathrm{mmol})$ in dry THF $\left(1 \mathrm{~cm}^{3}\right)$ under nitrogen at room temperature. After 24 h , the solvent was evaporated off under reduced pressure and the residue was purified by column chromatography on silica gel (11 g) with ($200: 8: 1$) $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ $\mathrm{EtOH}-\mathrm{aq} . \mathrm{NH}_{3}$ as eluent to give the urea syn-20 ($92 \mathrm{mg}, 89 \%$) as needles, m.p. $186-187^{\circ} \mathrm{C} ; R_{\mathrm{f}}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-EtOH-aq. NH_{3} ($150: 8: 1$)] $0.38 ; v_{\text {max }}\left(\mathrm{CHBr}_{3}\right) / \mathrm{cm}^{-1} 3360$ and $3330(\mathrm{OH}$ and $\mathrm{NH}), 1680(\mathrm{C}=\mathrm{O}), 1600(\mathrm{Ph}), 1560(\mathrm{C}=\mathrm{O})$ and $1500(\mathrm{Ph})$; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 8.49(1 \mathrm{H}, \mathrm{s}, \mathrm{Ph})$, $7.58-7.55(2 \mathrm{H}, \mathrm{m}$, Ph), 7.42-7.39 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.32-7.19 ($4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 6.88 ($\left.1 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{NHC}_{6} \mathrm{H}_{4}-p-H\right), 6.24(1 \mathrm{H}, \mathrm{t}, J 5.7, \mathrm{NH}), 4.70(1 \mathrm{H}$, d, $J 6.2, \mathrm{OH}), 3.26(1 \mathrm{H}, \mathrm{d}, J 6.0, \mathrm{CHOH}), 3.08(1 \mathrm{H}, \mathrm{dt}, J 13.1$ and 6.5, $\left.\mathrm{C}_{\mathrm{A}} \mathrm{N}_{\mathrm{B}} \mathrm{N}\right), 2.92\left(1 \mathrm{H}, \mathrm{dt}, J 13.1\right.$ and $\left.6.6, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{N}\right)$, $2.62-2.54(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{Me}), 1.86-1.08\left(10 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{10}\right)$ and 0.90 ($3 \mathrm{H}, \mathrm{d}, J$ 6.6, CHMe) (Found: $\mathrm{M}^{+}-\mathrm{PhNH}_{2}, 305.1464$. $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}$ requires $\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}, 305.1450$); $m / z 305(1 \%$, $\mathrm{M}-\mathrm{PhNH}_{2}$), 289 (16, M - SPh), 207 ($64, \mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{10} \cdot \mathrm{SPh}$), $191\left(46, \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{SPh}\right), 119(50, \mathrm{PhNCO}), 93\left(100, \mathrm{PhNH}_{2}\right)$ and 81 (72, $\mathrm{C}_{6} \mathrm{H}_{9}$) (Found: C, 68.7; H, 7.5; N, 6.8. $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 69.31 ; \mathrm{H}, 7.59 ; \mathrm{N}, 7.03 \%$).

Rearrangement of (2RS,3SR)-N-\{3-Hydroxy-2-methyl-3-[1(phenylthio)cyclohexyl] propyl $\}-\mathrm{N}^{\prime}$-phenylurea syn-20.-In the same way as the allylic sulfide anti-26, the urea syn-20 (30 mg , 0.075 mmol) and $\mathrm{TsOH}(11.5 \mathrm{mg}, 0.06 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}\left(1 \mathrm{~cm}^{3}\right)$ gave the pyrrolidine syn- $\mathbf{3 1}(20 \mathrm{mg}, 70 \%)$ as needles, m.p. $187-$ $189^{\circ} \mathrm{C}, R_{\mathrm{f}}$ [hexane-diethyl ether (1:1)] 0.53; $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1}$ $3845(\mathrm{NH}), 1645(\mathrm{C}=\mathrm{O}), 600(\mathrm{Ph})$ and $1530(\mathrm{NH}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 7.48-7.42 (2 H, m, Ph), 7.38-7.16(7 H, m, Ph), 7.05-6.98(1 H, m, $\mathrm{Ph}), 6.03(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}), 3.93(1 \mathrm{H}, \mathrm{d}, J 5.0, \mathrm{CHSPh}), 3.52(1 \mathrm{H}$, $\left.\mathrm{t}, J 8.0, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}\right), 3.32\left(1 \mathrm{H}, \mathrm{dd}, J 11.0\right.$ and $\left.8.0, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right), 3.01-$ $2.78\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{Me}\right.$ and $\left.\mathrm{C}_{6} \mathrm{H}\right), 2.73-2.59(1 \mathrm{H}, \mathrm{td}, J 13.0$ and 4.0, $\left.\mathrm{C}_{6} \mathrm{H}\right), 2.12-2.02\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}\right), 1.86-1.28\left(7 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{7}\right)$ and $1.08\left(3 \mathrm{H}, \mathrm{d}, J 6.5\right.$, CHMe) (Found: $\mathrm{M}^{+}, 380.1913$. $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{OS}$ requires $\mathrm{M}, 380.1922$); $m / z 380$ ($7 \%, \mathrm{M}$), 271 (27, $\mathrm{M}-\mathrm{PhS}$), 152 (44, M - PhS - PhHCO), 119 (55, PhNCO) and $111(100)$, and the allylic sulfide anti-32 $(8 \mathrm{mg}, 28 \%)$ as an oil, $R_{\mathrm{f}}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-EtOH-aq. $\left.\mathrm{NH}_{3}(150: 8: 1)\right] \quad 0.40 ; v_{\text {max }}-$ $\left(\mathrm{CHBr}_{3}\right) / \mathrm{cm}^{-1} 3420(\mathrm{NH}), 1670(\mathrm{C}=\mathrm{O}), 1600(\mathrm{Ph})$ and 1525 $(\mathrm{NH}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.33-7.21(9 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.15-7.06(1 \mathrm{H}, \mathrm{m}$, Ph), $6.51(1 \mathrm{H}, \mathrm{brs}, \mathrm{NH}), 5.13(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C}=\mathrm{CH}), 4.99(1 \mathrm{H}, \mathrm{t}, J$ $6.5, \mathrm{NH}), 3.61\left(1 \mathrm{H}\right.$, ddd, $J 14.0,6.5$, and $\left.4.5, \mathrm{CH}_{\mathrm{A}} \mathrm{CH}_{\mathrm{B}} \mathrm{N}\right), 3.42$ $\left(1 \mathrm{H}, \mathrm{dt}, J 14.0\right.$ and $\left.6.0, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{N}\right), 3.28(1 \mathrm{H}, \mathrm{d}, J 10.5, \mathrm{C} H \mathrm{SPh})$, 2.33-2.19 (1 H, m, HCC=C), 2.01-1.38 (8 H, m, CHMe and $\mathrm{C}_{4} \mathrm{H}_{7}$) and 0.96 ($3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CHMe}$) (Found: $\mathrm{M}^{+}, 380.1899$); $m / z 380(1 \%, M), 271(100, \mathrm{M}-\mathrm{PhS})$ and $110(25, \mathrm{PhSH})$.
(2RS,3RS)-N-\{3-Hydroxy-2-methyl-3-[1-(phenylthio)cyclohexyl]propyl $\}$ - N^{\prime}-phenylurea anti-20.-In the same way as for the urea $\operatorname{syn}-20$, the amine anti- $9(431 \mathrm{mg}, 1.54 \mathrm{mmol})$ and phenyl isocyanate ($0.18 \mathrm{~cm}^{3}, 1.67 \mathrm{mmol}$) gave the urea anti-20 ($599 \mathrm{mg}, 97 \%$) as needles, m.p. $180-181^{\circ} \mathrm{C} ; R_{\mathrm{f}}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-\right.$ aq. $\left.\mathrm{NH}_{3}(150: 8: 1)\right] 0.43 ; v_{\max }\left(\mathrm{CHBr}_{3}\right) / \mathrm{cm}^{-1} 3415(\mathrm{NH})$ and
$1665(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.47-7.26(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.13-7.07$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{NH}$), $6.43(1 \mathrm{H}, \mathrm{br}$, NH), $3.44(1 \mathrm{H}, \mathrm{dd}, J 13.6$ and 4.0 , $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}\right), 3.35\left(1 \mathrm{H}, \mathrm{dd}, J 13.6\right.$ and $\left.6.2, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{N}\right), 3.11(1 \mathrm{H}, \mathrm{d}$, $J 4.8, \mathrm{C} H \mathrm{OH}), 2.08-1.21\left(12 \mathrm{H}, \mathrm{m}, \mathrm{CHMe}, \mathrm{C}_{6} \mathrm{H}_{10}\right.$, and OH) and $0.90(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CH} M e)$ (Found: $\mathrm{M}^{+}-\mathrm{PhSH}, 288.1324$. $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~S}, 288.1337$); $m / z 288(0.6 \%$, M - PhSH), 207 (79, M - $\mathrm{C}_{6} \mathrm{H}_{10}$ SPh), 119 (72, PhNCO), 110 ($52, \mathrm{PhSH}$), $93\left(100, \mathrm{PhNH}_{2}\right)$ and $88\left(87, \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{NO}\right.$) (Found: C, $69.3 ; \mathrm{H}, 7.6 ; \mathrm{N}, 7.1 . \mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires C, 69.31; H, 7.59; N, 7.03%).

Rearrangement of (2RS,3RS)-N-3-\{Hydroxy-2-methyl-3-[1(phenylthio)cyclohexyl] propyl $\}-\mathrm{N}^{\prime}$-phenylurea anti-20.-In the same way as the rearrangement of the amide syn- 24 (see below), the urea anti-20 ($60 \mathrm{mg}, 0.15 \mathrm{mmol}$) and TMSOTf $\left(31 \mathrm{~mm}^{3}, 0.15\right.$ mmol) gave the pyrrolidine anti- $31(35 \mathrm{mg}, 61 \%)$ as an oil, R_{f} [hexane-diethyl ether (2:1)] 0.35; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3430$ $(\mathrm{NH}), 1650(\mathrm{C}=\mathrm{O})$ and $1590(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.42-7.19(9 \mathrm{H}$, m, Ph and $\mathrm{C}_{6} \mathrm{H}_{4}$), 7.04-6.97 ($\left.1 \mathrm{H}, \mathrm{m}, \mathrm{NHC}_{6} \mathrm{H}_{4}-p-H\right), 6.11$ (1 $\mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 3.87\left(1 \mathrm{H}, \mathrm{t}, J 8.2, \mathrm{C}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}\right), 3.48(1 \mathrm{H}, \mathrm{d}, J$ $4.5, \mathrm{CHSPh}), 3.26\left(1 \mathrm{H}, \mathrm{dd}, J 8.2\right.$ and $\left.4.3, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{N}\right), 2.94-2.69$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{2}\right), 2.46-2.36(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{Me}), 1.92-1.24(8 \mathrm{H}, \mathrm{m}$, $\mathrm{C}_{6} \mathrm{H}_{8}$) and $1.20(3 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{CH} M e)$ (Found: $\mathrm{M}^{+}, 380.1945$. $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{OS}$ requires M, 380.1922); $m / z 380(1 \%, \mathrm{M})$, 119 (100, PhNCO) and 111 (57); and the allylic sulfide syn-32 10 mg , 17%) as an oil, R_{f} [hexane-diethyl ether (2:1)] 0.14; $v_{\text {max }}{ }^{-}$ $\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3320(\mathrm{NH}), 1650(\mathrm{C}=\mathrm{O})$ and $1590(\mathrm{Ph})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 7.39-7.14 $(9 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.07-7.00(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{NHC}_{6} \mathrm{H}_{4}-p-H\right), 6.95(1 \mathrm{H}, \mathrm{brs}, \mathrm{NH}), 5.26-5.22(2 \mathrm{H}, \mathrm{m}, \mathrm{NH}$ and $\mathrm{HC}=\mathrm{C}), 3.43-3.31\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{CH}_{\mathrm{B}} \mathrm{N}\right)$, $3.32(1 \mathrm{H}, \mathrm{d}, J 9.2$, $\mathrm{C} H \mathrm{SPh}$), 3.01-2.91 ($1 \mathrm{H}, \mathrm{dt}, J 13.4$ and $6.7, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{N}} \mathrm{N}$), $2.28-$ 2.19 ($1 \mathrm{H}, \mathrm{m}, \mathrm{HCC}=\mathrm{C}$), 2.05-1.36 ($8 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{Me}$ and $\mathrm{C}_{4} \mathrm{H}_{7}$) and 1.11 ($3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CHMe}$) (Found: $\mathrm{M}^{+}-\mathrm{PhNH}_{2}$, 287.1347. $\mathrm{C}_{17} \mathrm{H}_{21}$ NOS requires $\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}, 287.1344$); m / z 287 ($0.4 \%, \mathrm{M}-\mathrm{PhNH}_{2}$), 271 ($100, \mathrm{M}-\mathrm{PhS}$) and 93 (65 , PhNH_{2}).
(2RS,3RS)-N-\{3-Hydroxy-2-methyl-3-[1-(phenylthio)cyclo-hexyl]propyl- N^{\prime}-(p-methoxyphenyl)urea anti-21.-In the same way as the urea syn-20, the amine anti-9 ($248 \mathrm{mg}, 0.89 \mathrm{mmol}$) and p-methoxyphenyl isocyanate $\left(0.126 \mathrm{~cm}^{3}, 0.98 \mathrm{mmol}\right)$ gave the urea anti-21 ($350 \mathrm{mg}, 92 \%$) as a foam, $R_{\mathrm{f}}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-\right.$ aq. $\left.\mathrm{NH}_{3}(150: 8: 1)\right] 0.37 ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3420(\mathrm{NH})$ and $1650(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.45-7.30(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.17(2 \mathrm{H}, \mathrm{dd}$, $J 6.7$ and $\left.2.2, \mathrm{NHC}_{6} \mathrm{H}_{2} \mathrm{OMe}\right), 6.86(2 \mathrm{H}, \mathrm{dd}, J 6.7$ and 2.2 , $\left.\mathrm{NHC}_{6} \mathrm{H}_{2} \mathrm{OMe}\right), 6.30(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.39$ ($1 \mathrm{H}, \mathrm{dd}, J 13.0$ and $4.0, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}$), $3.30(1 \mathrm{H}, \mathrm{dd}, J 13.0$ and 6.6 , $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{N}\right), 3.08(1 \mathrm{H}, \mathrm{d}, J 4.8, \mathrm{CHOH}), 2.05-1.16(11 \mathrm{H}, \mathrm{m}$, CHMe and $\mathrm{C}_{6} \mathrm{H}_{10}$) and 0.87 ($3 \mathrm{H}, \mathrm{d}, J$ 6.9, CHMe); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 157.02,156.71,137.04,131.31,129.68,129.15$, $128.89,124.53,114.44,78.17,63.14,55.49,43.62,33.30,30.24$, 29.08, 26.07, 21.85, 21.63 and 19.59 (Found: $\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}$, 410.2013. $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{M}-\mathrm{H}_{2} \mathrm{O}, 410.2028$); m / z $410\left(0.1 \%, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right), 237\left(40, \mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{10} . \mathrm{SPh}\right)$, 149 (60 , $\left.\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{NCO}\right)$ and $88\left(100, \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{NO}\right)$.

Rearrangement of (2RS,3RS)-N-\{3-Hydroxy-2-methyl-3-[1(phenylthio)cyclohexyl]propyl $\}$ - N^{\prime}-(p-methoxyphenyl)urea anti-21. In the same way as the allylic sulfide anti-26, the urea anti-21 ($38 \mathrm{mg}, 0.09 \mathrm{mmol}$) and TsOH ($13.5 \mathrm{mg}, 0.07 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}\left(1 \mathrm{~cm}^{3}\right)$ gave the pyrrolidine anti- $33(1.5 \mathrm{mg}, 4 \%)$ as an oil, $R_{\mathrm{f}}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-EtOH-aq. $\left.\mathrm{NH}_{3}(300: 8: 1)\right] 0.52 ; v_{\text {max }}-$ (Nujol) $/ \mathrm{cm}^{-1} 1645(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.42-7.19(7 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ and $\mathrm{NHC}_{6} \mathrm{H}_{2} \mathrm{OMe}$), $6.82\left(2 \mathrm{H}\right.$, dd, $J 6.7$ and $2.2, \mathrm{NHC}_{6}{ }^{-}$ $\left.\mathrm{H}_{2} \mathrm{OMe}\right), 5.95(1 \mathrm{H}, \mathrm{brs}, \mathrm{NH}), 3.85\left(1 \mathrm{H}, \mathrm{t}, J 7.7, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}\right), 3.77$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.48 ($1 \mathrm{H}, \mathrm{d}, J 4.5, \mathrm{C} H \mathrm{SPh}$), $3.14(1 \mathrm{H}, \mathrm{dd}, J 8.4$ and 4.3, $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{N}\right), 2.91-2.68\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{2}\right), 2.44-2.38(1 \mathrm{H}, \mathrm{m}$, $\mathrm{C} H \mathrm{Me}), 1.91-1.24\left(8 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{8}\right)$ and $1.19(3 \mathrm{H}, \mathrm{d}, J 7.1$,

CHMe) (Found: $\mathrm{M}^{+}, 410.2041 . \mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires M , 410.2028); $m / z 410(0.8 \%, \mathrm{M}), 149\left(93, \mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{NCO}\right)$ and $110(100, \mathrm{PhSH})$; and the allylic sulfide $\operatorname{syn}-34(15 \mathrm{mg}, 41 \%)$ as an oil, $R_{\mathrm{f}}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-EtOH-aq. $\left.\mathrm{NH}_{3}(300: 8: 1)\right] 0.28 ; v_{\text {max }}-$ $\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3410(\mathrm{NH})$ and $1655(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)^{7.28-}$ $7.10\left(7 \mathrm{H}, \mathrm{m}, \mathrm{Ph}\right.$ and $\left.\mathrm{NHC}_{6} \mathrm{H}_{2} \mathrm{OMe}\right), 6.81(2 \mathrm{H}, \mathrm{dd}, J 6.7$ and 2.1, $\mathrm{NHC}_{6} \mathrm{H}_{2} \mathrm{OMe}$), $6.45(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 5.18(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C}=\mathrm{CH})$, $4.85(1 \mathrm{H}, \mathrm{brs}, \mathrm{NH}), 3.76(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.36(1 \mathrm{H}, \mathrm{dd}, J 13.6$ and $\left.4.9, \mathrm{CH}_{\mathrm{A}} \mathrm{CH}_{\mathrm{B}} \mathrm{N}\right), 3.30(1 \mathrm{H}, \mathrm{d}, J 9.0, \mathrm{C} H S \mathrm{Sh}), 2.96(1 \mathrm{H}, \mathrm{dd}, J$ 13.6 and $\left.7.3, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{N}\right), 2.28-2.12(1 \mathrm{H}, \mathrm{m}, \mathrm{HCC}=\mathrm{C}), 2.04-1.39$ ($8 \mathrm{H}, \mathrm{m}, \mathrm{CHMe}$ and $\mathrm{C}_{4} \mathrm{H}_{7}$) and $1.09(3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CHMe}$) (Found: $\mathrm{M}^{+}, 410.2044 . \mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{M}, 410.2027$); $m / z 410(2 \%, \mathrm{M}), 301(97, \mathrm{M}-\mathrm{PhS}), 152$ ($64, \mathrm{M}-\mathrm{PhS}-$ $\left.\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{NCO}\right) 149\left(100, \mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{HCO}\right)$ and 110 (75, PhSH).
(2RS,3RS)-N-\{3-Hydroxy-2-methyl-3-(phenylthio)cyclohex$y l]$ propyl $\}-\mathrm{N}^{\prime}-(\mathrm{p}-$ nitrophenyl) urea anti-22.-In the same way as the urea syn-20, the amine anti-9 ($140 \mathrm{mg}, 0.5 \mathrm{mmol}$) and p nitrophenyl isocyanate ($0.92 \mathrm{mg}, 0.55 \mathrm{mmol}$) gave the urea anti$22(212 \mathrm{mg}, 96 \%)$ as a foam, $R_{\mathrm{f}}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}\right.$-aq. NH_{3} (150:8:1)] 0.34; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3390(\mathrm{NH}), 1690(\mathrm{C}=\mathrm{O})$, $1600(\mathrm{Ph})$ and $1330\left(\mathrm{NO}_{2}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.15(2 \mathrm{H}, \mathrm{d}, J 9.2$, $\mathrm{NHC}_{6} \mathrm{H}_{2} \mathrm{NO}_{2}$), 7.53 ($2 \mathrm{H}, \mathrm{d}, J 9.2, \mathrm{NHC}_{6} \mathrm{H}_{2} \mathrm{NO}_{2}$), $7.48-7.31$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 3.53-3.22 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.44-3.42(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 3.16(1 \mathrm{H}, \mathrm{d}, J 4.8, \mathrm{CHOH}) 2.08-1.14(11 \mathrm{H}, \mathrm{m}, \mathrm{CHMe}$ and $\mathrm{C}_{6} \mathrm{H}_{10}$) and $0.93(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CHMe}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ 155.17, 146.07, 141.85, 136.97, 129.35, 129.02, 125.27, 117.67, $113.57,78.26,63.09,43.73,33.19,30.38,29.20,26.06,21.85,21.62$ and 1950 (Found: $\mathrm{M}^{+}-\mathrm{PhS}-\mathrm{H}_{2} \mathrm{O}, 316.1651 . \mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{OS}, 316.1661$); $m / z 316(0.4 \%, \mathrm{M}-\mathrm{PhS}-$ $\mathrm{H}_{2} \mathrm{O}$), $191\left(40, \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{SPh}\right), 152\left(43, \mathrm{M}-\mathrm{PhS}-\mathrm{H}_{2} \mathrm{O}-\right.$ $\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{HCO}$), 138 (43, $\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}$), 111 (75), 110 (62, $\mathrm{PhSH})$ and $88\left(100, \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{NO}\right)$.

Rearrangement of (2RS,3RS)-N-\{3-Hydroxy-2-methyl-3-[1(phenylthio)cyclohexyl]propyl $\}-\mathrm{N}^{\prime}$-(p-nitrophenyl)urea anti-22.--In the same way as the allylic sulfide anti-26, the urea anti$22(44 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathrm{TsOH}(15 \mathrm{mg}, 0.08 \mathrm{mmol})$ in CHCl_{3} $\left(1 \mathrm{~cm}^{3}\right)$ gave the pyrrolidine anti- $35\left(12 \mathrm{mg}, 28 \%\right.$) as an oil, R_{f} $\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-EtOH-aq. $\left.\mathrm{NH}_{3}(200: 8: 1)\right] 0.76 ; v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1}$ $1660(\mathrm{C}=\mathrm{O}), 1595(\mathrm{Ph})$ and $1325\left(\mathrm{NO}_{2}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 8.18-8.12 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NHC}_{6} \mathrm{H}_{2} \mathrm{NO}_{2}$), $7.56-7.51\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NHC}_{6} \mathrm{H}_{2} \mathrm{NO}_{2}\right.$), 7.42-7.20 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.49(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 3.92(1 \mathrm{H}, \mathrm{t}, J 7.7$, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}\right), 3.50(1 \mathrm{H}, \mathrm{d}, J 4.4, \mathrm{C} H \mathrm{SPh}), 3.19(1 \mathrm{H}, \mathrm{dd}, J 8.3$ and 4.1, $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{N}\right), 2.86-2.63\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{2}\right), 2.49-2.39(1 \mathrm{H}, \mathrm{m}$, $\mathrm{C} H \mathrm{Me}), 1.93-1.24\left(8 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{8}\right)$ and $1.20(3 \mathrm{H}, \mathrm{d}, J 7.2$, CHMe) (Found: $\mathrm{M}^{+}, 425.1750 . \mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ requires M , 425.1773); $m / z 425$ ($0.1 \%, \mathrm{M}$), 261 ($21, \mathrm{M}-\mathrm{O}_{2} \mathrm{NC}_{2} \mathrm{H}_{4} \mathrm{NCO}$), 164 (38, $\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{NCO}$), $152\left(37, \mathrm{M}-\mathrm{PhS}-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}-\right.$ NCO), 111 (100), and (41, PhSH); and the allylic sulfide $\operatorname{syn}-36$ ($12 \mathrm{mg}, 28 \%$) as an oil, $R_{\mathrm{f}}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-\right.$ aq. $\left.\mathrm{NH}_{3}(200: 8: 1)\right]$ $0.40 ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3360(\mathrm{NH}), 1660(\mathrm{C}=\mathrm{O}), 1595(\mathrm{Ph})$ and $1325\left(\mathrm{NO}_{2}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.11\left(2 \mathrm{H}, \mathrm{d}, J 9.2, \mathrm{NHC}_{6}-\right.$ $\mathrm{H}_{2} \mathrm{NO}_{2}$), 7.52-7.47 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NHC}_{6} \mathrm{H}_{2} \mathrm{NO}_{2}$), $7.31-7.17(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}), 5.37(1 \mathrm{H}, \mathrm{brs}, \mathrm{NH}), 5.31(1 \mathrm{H}, \mathrm{brs}, \mathrm{C}=\mathrm{CH}), 3.50-3.40(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{CH}_{\mathrm{B}} \mathrm{N}\right), 3.38(1 \mathrm{H}, \mathrm{d}, J 8.9, \mathrm{C} H \mathrm{SPh}), 3.02(1 \mathrm{H}, \mathrm{dd}, J 13.2$ and 7.4, $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{N}\right), 2.27-2.21(1 \mathrm{H}, \mathrm{m}, \mathrm{HCC}=\mathrm{C}), 2.07-1.98(1 \mathrm{H}$, $\mathrm{m}, \mathrm{C} H \mathrm{Me}), 1.91-1.44\left(7 \mathrm{H}, \mathrm{m}, \mathrm{C}_{4} \mathrm{H}_{7}\right)$ and $1.14(3 \mathrm{H}, \mathrm{d}, J 6.7$, CHMe) (Found: $\mathrm{M}^{+}-\mathrm{PhS}$, 316.1652. $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires M - $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}, 316.1661$); m/z 316 (5%, M -PhS) 152 (90 , $\mathrm{M}-\mathrm{PhS}-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{NCO}$), $135\left(74, \mathrm{C}_{10} \mathrm{H}_{15}\right), 110$ (51, $\mathrm{PhSH})$ and 95 (100).
(2RS,3SR)-Ethyl N-\{3-Hydroxy-2-methyl-3-[1-(phenylthio)cyclohexyl] propyl\} carbamate syn-23.-In the same way as the amide $\operatorname{syn}-17$, the amine $s y n-9(140 \mathrm{mg}, 0.5 \mathrm{mmol})$ and ethyl chloroformate ($0.057 \mathrm{~cm}^{3}, 0.6 \mathrm{mmol}$) gave the carbamate syn-23
($174 \mathrm{mg}, 99 \%$) as an oil, $R_{\mathrm{f}}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-\right.$ aq. NH_{3} ($300: 8: 1$)] 0.37; $v_{\text {max }}\left(\mathrm{CHBr}_{3}\right) / \mathrm{cm}^{-1} 3450(\mathrm{NH}), 1705(\mathrm{C}=\mathrm{O})$ and $1510(\mathrm{NH}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.53-7.48(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.38-7.32$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$) $, 4.98(1 \mathrm{H}, \mathrm{brs}, \mathrm{NH}), 4.07\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J7.0}, \mathrm{OCH}_{2}\right), 3.33$ ($1 \mathrm{H}, \mathrm{brs}, \mathrm{OH}$), $3.28-3.15\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}\right), 3.14(1 \mathrm{H}, \mathrm{d}, J 3.0$, $\mathrm{CHOH}), 2.99\left(1 \mathrm{H}, \mathrm{dt}, J 13.5\right.$ and $\left.5.5, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{N}\right), 2.18-1.24$ $\left(11 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{Me}\right.$ and $\left.\mathrm{C}_{6} \mathrm{H}_{10}\right), 1.21\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0, \mathrm{OCH}_{2} \mathrm{Me}\right)$ and $1.02\left(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CHM}\right.$) (Found: $\mathrm{M}^{+}, 351.1861 . \mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}$ requires M, 351.1868); m/z $351(0.2 \%$, M), 305 (4, M -EtOH) and $242(53, \mathrm{M}-\mathrm{PhS})$.
(2RS,3RS)-Ethyl $\quad \mathrm{N}-\{3-$ Hydroxy-2-methyl-3-[1-(phenylthio)cyclohexyl]propyl\}carbamate anti-23.-Ethyl chloroformate ($0.07 \mathrm{~cm}^{3}, 0.73 \mathrm{mmol}$) was added to a solution of the amine anti-9 ($185 \mathrm{mg}, 0.66 \mathrm{mmol}$) and 4 -(dimethylamino) pyridine (4-DMAP) ($88 \mathrm{mg}, 0.73 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ under argon at $0^{\circ} \mathrm{C}$. After 2 h the solvent was evaporated off under reduced pressure and the residue was purified by column chromatography on silica gel (13 g) with ($300: 8: 1$) $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ $\mathrm{EtOH}-\mathrm{aq} . \mathrm{NH}_{2}$ as eluent to give the carbamate anti- $23(228 \mathrm{mg}$, 98%) as needles, m.p. $116-117^{\circ} \mathrm{C} ; R_{\mathrm{f}}$ [hexane-diethyl ether (1:1)] 0.32; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3430(\mathrm{NH})$ and $1700(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.49-7.46(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.41-7.28(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, $5.36(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 4.09\left(2 \mathrm{H}, \mathrm{qd}, J 7.1\right.$ and $\left.1.9, \mathrm{OCH}_{2}\right), 3.38-$ $3.22\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.11(1 \mathrm{H}, \mathrm{d}, J 4.3, \mathrm{CHOH}), 2.10-1.17$ $\left(12 \mathrm{H}, \mathrm{m}, \mathrm{OH}, \mathrm{CH}\right.$ Me and $\left.\mathrm{C}_{6} \mathrm{H}_{10}\right), 1.23\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{OCH}_{2} \mathrm{Me}\right)$ and $0.88(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CHMe})$ (Found: $\mathbf{M}^{+}, 351.1887$. $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}$ requires $\mathrm{M}, 351.1868$); $m / z 351(0.2 \%, \mathrm{M}), 242$ ($50, \mathrm{M}-\mathrm{PhS}$), 224 ($57, \mathrm{M}-\mathrm{PhSH}-\mathrm{OH}$), $160(66, \mathrm{M}-$ $\left.\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{SPh}\right)$ and $102\left(100, \mathrm{CH}_{2} \mathrm{NHCO}_{2} \mathrm{Et}\right)$.

Rearrangement of (2RS,3SR)-Ethyl N -\{3-Hydroxy-2-methyl-3-[1-(phenylthio)cyclohexyl]propyl\}carbamate syn-23.-In the same way as the rearrangement of the amide anti-17, the carbamate syn- 23 ($27 \mathrm{mg}, 0.077 \mathrm{mmol}$) and TMSOTf ($15.6 \mathrm{~cm}^{3}$, 0.08 mmol) gave, after purification by column chromatography on silica gel (12 g) and elution with ($4: 1$) hexane-diethyl ether, the pyrrolidine syn- $37(19 \mathrm{mg}, 74 \%)$ as needles, m.p. $111-112^{\circ} \mathrm{C}$; R_{f} [hexane-diethyl ether (3:1)] 0.43; $v_{\max }\left(\mathrm{CHBr}_{3}\right) / \mathrm{cm}^{-1} 1680$ $(\mathrm{C}=\mathrm{O})$ and $1580(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.44-7.14(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.10$ ($2 \mathrm{H}, \mathrm{q}, J 7.0, \mathrm{OCH}_{2}$), $3.84(1 \mathrm{H}, \mathrm{d}, J 4.8, \mathrm{CHSPh}), 3.58(1 \mathrm{H}, \mathrm{br}$ $\left.\mathrm{t}, J 7.4, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}\right), 3.14\left(1 \mathrm{H}, \mathrm{t}, J 11.0, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{N}\right), 2.78-2.56$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}\right.$ Me and $\left.\mathrm{C}_{6} \mathrm{H}\right), 2.40-2.21\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}\right), 2.04(1 \mathrm{H}$, br d, $\left.J 13.5, \mathrm{C}_{6} \mathrm{H}\right), 1.79-1.16\left(7 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{7}\right), 1.25(3 \mathrm{H}, \mathrm{t}, J 7.0$, $\mathrm{OCH}_{2} \mathrm{Me}$) and $1.01(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CHMe})$ (Found: M^{+}, 333.1774. $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{~S}$ requires $\mathrm{M}, 333.1763$); $m / z 333$ (24%, M), 224 ($100, \mathrm{M}-\mathrm{PhS}$) and 110 ($18, \mathrm{PhSH}$) (Found: C, 68.4; $\mathrm{H}, 8.1 ; \mathrm{N}, 3.8 . \mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{~S}$ requires $\mathrm{C}, 68.43 ; \mathrm{H}, 8.16 ; \mathrm{N}$, 4.20%) ; and the allylic sulfide anti-38 ($5 \mathrm{mg}, 20 \%$) as an oil, R_{f} [hexane-diethyl ether (3:1)] 0.28; $v_{\max }\left(\mathrm{CHBr}_{3}\right) / \mathrm{cm}^{-1} 3440$ (NH) and $1710(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.37-7.32(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, $7.30-7.22(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.17(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{HC=C}), 4.84(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{NH}), 4.13\left(2 \mathrm{H}, \mathrm{q}, J 7.0, \mathrm{OCH}_{2}\right), 3.58(1 \mathrm{H}, \mathrm{ddd}, J 13.9,6.6$ and $\left.4.2, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}\right), 3.32-3.21\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{N}\right), 3.27(1 \mathrm{H}, \mathrm{d}, J$ $10.3, \mathrm{C} H \mathrm{SPh}), 2.29-2.21(1 \mathrm{H}, \mathrm{m}, \mathrm{HCC}=\mathrm{C}), 1.96-1.41(8 \mathrm{H}, \mathrm{m}$, CHMe and $\mathrm{C}_{4} \mathrm{H}_{7}$), $1.24\left(3 \mathrm{H}, 5, \mathrm{~J} 7.0, \mathrm{OCH}_{2} \mathrm{Me}\right)$ and $0.92(3 \mathrm{H}$, d, J 6.8, CHMe) (Found: M^{+}- EtOH, 287.1327. $\mathrm{C}_{1}, \mathrm{H}_{21} \mathrm{NOS}$ requires $\left.\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}, 287.1344\right)$; $m / z 287(2 \%, \mathrm{M}-\mathrm{EtOH})$, 224 ($67, \mathrm{M}-\mathrm{PhS}$) and $102\left(100, \mathrm{CH}_{2} \mathrm{NHCO}_{2} \mathrm{Et}\right)$.

Rearrangement of (2RS,3RS)-Ethyl N -\{3-Hydroxy-2-methyl-3-[1-(phenylthio) cyclohexyl] propyl \} carbamate anti-23.-A solution of the carbamate anti-23 ($35 \mathrm{mg}, 0.1 \mathrm{mmol}$) and TsOH (15 $\mathrm{mg}, 0.08 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1.5 \mathrm{~cm}^{3}\right)$ was heated under reflux under argon for 30 min . The solvent was evaporated off under reduced pressure and the residue was purified by column chromatography on silica gel (10 g) and elution with ($4: 1$) light petroleum $\left(40-60^{\circ} \mathrm{C}\right)$-diethyl ether, to give the pyrrolidine anti-
$37(29.5 \mathrm{mg}, 88 \%)$ as an oil, R_{f} [light petroleum ($40-60^{\circ} \mathrm{C}$)diethyl ether (2:1)] 0.54; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1670(\mathrm{C}=\mathrm{O})$ and $1575(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.40-7.17(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.09(2 \mathrm{H}, \mathrm{q}, J$ $\left.7.1, \mathrm{OCH}_{2}\right), 3.75\left(1 \mathrm{H}\right.$, dd, $J 11.0$ and $\left.7.1, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}\right), 3.35(1 \mathrm{H}$, $\mathrm{d}, J 5.1, \mathrm{C} H \mathrm{SPh}), 3.17\left(1 \mathrm{H}, \mathrm{dd}, J 11.0\right.$ and $\left.4.9, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{N}\right), 2.56-$ $2.41\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{2}\right), 2.28-2.19(1 \mathrm{H}$, sym. m, CHMe), 1.93-1.30 $\left(8 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{8}\right), 1.25\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{OCH}_{2} \mathrm{Me}\right)$ and $1.11(3 \mathrm{H}, \mathrm{d}, J$ 7.0, CHMe) (Found: $\mathrm{M}^{+}, 333.1763 . \mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{~S}$ requires M , 333.1763); $m / z 333(19 \%, \mathrm{M}), 224(100, \mathrm{M}-\mathrm{PhS})$ and $110(26$, PhSH); and the allylic sulfide syn-38 ($3 \mathrm{mg}, 9 \%$) as an oil, R_{f} [hexane-diethyl ether (3:1)] 0.30; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3440$ (NH) and $1700(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.45-7.15(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, $5.26(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{HC}=\mathrm{C}), 4.68(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 4.09(2 \mathrm{H}, \mathrm{q}, J 7.1$, $\left.\mathrm{OCH}_{2}\right), 3.35-3.25\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}\right), 3.32(1 \mathrm{H}, \mathrm{d}, J 9.4$, $\mathrm{C} H \mathrm{SPh}), 2.97-2.86\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{N}\right), 2.30-2.21(1 \mathrm{H}, \mathrm{m}$, $\mathrm{HCC}=\mathrm{C}), 2.04-1.27\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CHMe}\right.$ and $\left.\mathrm{C}_{4} \mathrm{H}_{7}\right), 1.22(3 \mathrm{H}, \mathrm{t}, J$ 7.1, $\mathrm{OCH}_{2} \mathrm{Me}$) and $1.14\left(3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CHMe}\right.$) (Found: M^{+}, 333.1760); m/z 333 ($15 \%, \mathrm{M}$), 224 (54, M - PhS) and 102 (100, $\mathrm{CH}_{2} \mathrm{NHCO}_{2} \mathrm{Et}$).
(2RS,3SR)-N-\{3-Hydroxy-2-methyl-3-[1-(phenylthio)cyclohexyl]propyl\} tosylamide syn-24.-A solution of the amine syn$9(140 \mathrm{mg}, 0.5 \mathrm{mmol})$, toluene-p-sulfonyl chloride ($101 \mathrm{mg}, 0.53$ mmol) and 4-DMAP ($64 \mathrm{mg}, 0.53 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(4 \mathrm{~cm}^{3}\right)$ was stirred at room temperature under argon for 3 h . The solvent was evaporated off under reduced pressure and the residue was purified by column chromatography on silica gel (12 g) with (1:1) hexane-diethyl ether as eluent to give the sulfonamide syn24 ($205 \mathrm{~g}, 94 \%$) as needles, m.p. $145-147^{\circ} \mathrm{C}$; $R_{\mathrm{f}}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ EtOH-aq. $\left.\mathrm{NH}_{3}(300: 8: 1)\right] 0.43 ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1575(\mathrm{Ph})$, 1330 and $1150\left(\mathrm{SO}_{2}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.68(2 \mathrm{H}, \mathrm{d}, J 8.2$, $\left.\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Me}\right), 7.47-7.28\left(7 \mathrm{H}, \mathrm{m}, \mathrm{Ph}\right.$ and $\left.\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Me}\right), 4.89(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{NH}), 3.31(1 \mathrm{H}, \mathrm{d}, J 1.0, \mathrm{CHOH}), 2.96(1 \mathrm{H}, \mathrm{dd}, J 12.2$ and 6.1 , $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}\right), 2.80\left(1 \mathrm{H}\right.$, dd, $J 12.2$ and $\left.5.0, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{N}\right), 2.42(3 \mathrm{H}, \mathrm{s}$, ArMe), 2.01-1.90 (2 H, m, CH Me and OH), $1.80-1.17(10 \mathrm{H}, \mathrm{m}$, $\mathrm{C}_{6} \mathrm{H}_{10}$) and $0.96\left(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CHMe}\right.$) (Found: $\mathrm{M}^{+}, 433.1757$. $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{~S}_{2}$ requires $\mathrm{M}, 433.1745$); $m / z 433(0.2 \%$, M), 324 ($23, \mathrm{M}-\mathrm{PhS}$), 184 ($84, \mathrm{CH}_{2} \mathrm{NHSO}_{2}$ Tol), 155 (73, SO_{2} Tol), 110 (100, PhSH) and 91 (79, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}$) (Found: C, 63.8; H, 7.2; $\mathrm{N}, 3.2 ; \mathrm{S}, 14.5 . \mathrm{C}_{23} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{~S}_{2}$ requires $\mathrm{C}, 63.70 ; \mathrm{H}, 7.21 ; \mathrm{N}, 3.23$; S, 14.79%).

Rearrangement of (2RS,3SR)-N-\{3-Hydroxy-2-methyl-3-[1(phenylthio)cyclohexyl]propyl\}tosylamide syn-24.-TMSOTf ($10.5 \mathrm{~mm}^{3}, 0.05 \mathrm{mmol}$) was added to a solution of the sulfonamide syn-24 ($21 \mathrm{mg}, 0.048 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0$ cm^{3}) under argon at $-78^{\circ} \mathrm{C}$. The solution was allowed to warm slowly to room temperature and was stirred for 3 h . Purification by column chromatography on silica gel (7 g) and elution with (2:1) hexane-diethyl ether gave the sulfonamide syn-39 (19.5 $\mathrm{mg}, 97 \%$) as an oil, R_{f} [hexane-diethyl ether ($1: 1$)] 0.57 ; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1580(\mathrm{Ph}), 1320$ and $1140\left(\mathrm{SO}_{2}\right) ; \delta_{\mathrm{H}^{-}}$ $\left(\mathrm{CDCl}_{3}\right) 7.74\left(2 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right), 7.37-7.13(7 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ and $\left.\mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right), 3.83(1 \mathrm{H}, \mathrm{d}, J 4.6, \mathrm{CHSPh}), 3.73(1 \mathrm{H}, \mathrm{t}, J 8.7$, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}\right), 3.08\left(1 \mathrm{H}\right.$, dd,$J 11.4$ and $\left.9.1, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{N}\right), 2.86-2.74$ (1 H , sym. m, CHMe), 2.42 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}$), 2.38-2.21 ($2 \mathrm{H}, \mathrm{m}$, $\mathrm{C}_{6} \mathrm{H}_{2}$), 2.04-1.19 (8 H, m, $\mathrm{C}_{6} \mathrm{H}_{8}$) and $1.00(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CHMe})$ (Found: $\mathrm{M}^{+}, 415.1632 . \mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{2} \mathrm{~S}_{2}$ requires $\mathrm{M}, 415.1640$); $m / z 415(5 \%, \mathrm{M}), 260\left(23, \mathrm{M}-\mathrm{SO}_{2} \mathrm{Tol}\right), 110(100, \mathrm{PhSH})$ and $91\left(41, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)$; and the allylic sulfide anti-40 ($0.5 \mathrm{mg}, 2 \%$) as an oil, R_{f} [hexane-diethyl ether (1:1)] $0.41 ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{1}$ $3340(\mathrm{NH}), 1580(\mathrm{Ph}), 1330$ and $1150\left(\mathrm{SO}_{2}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.78-$ $7.73\left(2 \mathrm{H}, \mathrm{m}, \mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right), 7.37-7.18\left(7 \mathrm{H}, \mathrm{m}, \mathrm{Ph}\right.$ and $\left.\mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right)$, $5.13(1 \mathrm{H}$, br s, C=CH), $4.65(1 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{NH}), 3.33-3.17(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}\right), 3.24(1 \mathrm{H}, \mathrm{d}, J 10.5, \mathrm{C} H \mathrm{SPh}), 3.06(1 \mathrm{H}, \mathrm{dt}, J 12.8$ and 6.2, $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{N}\right), 2.42(3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}), 2.26-2.13(1 \mathrm{H}, \mathrm{m}$, $\mathrm{HCC}=\mathrm{C}), 1.95-1.37\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CHMe}\right.$ and $\left.\mathrm{C}_{4} \mathrm{H}_{7}\right)$ and $0.92(3 \mathrm{H}, \mathrm{d}$, $J 6.8, \mathrm{CHMe}$) (Found: $\mathrm{M}^{+}, 415.1638 . \mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{2} \mathrm{~S}_{2}$ requires

M, 415.1640); $m / z 415(0.6 \%, \mathrm{M}), 306(40-\mathrm{PhS}), 184$ (100 , $\left.\mathrm{CH}_{2} \mathrm{NHSO}_{2} \mathrm{Tol}\right), 155\left(70, \mathrm{SO}_{2} \mathrm{Tol}\right)$ and $91\left(57, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)$.
(2RS,3RS)-N-\{3-Hydroxy-2-methyl-3-[1-(phenylthio)cyclohexyl] propyl \}tosylamide anti-24.-In the same way as the sulfonamide syn-24, the amine anti-9 ($140 \mathrm{mg}, 0.5 \mathrm{mmol}$) gave the sulfonamide anti-24 ($209 \mathrm{mg}, 96 \%$) as a foam, $R_{\mathrm{f}}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ EtOH-aq. $\left.\mathrm{NH}_{3}(300: 8: 1)\right] \quad 0.61 ; \quad v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3320$ $(\mathrm{NH}), 1575(\mathrm{Ph}), 1330$ and $1155\left(\mathrm{SO}_{2}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.73(2 \mathrm{H}$, d, $J 8.3, \mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{2}$), $7.44-7.28\left(7 \mathrm{H}, \mathrm{m}, \mathrm{Ph}\right.$ and $\left.\mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right), 5.43$ (1 H, br s, NH), $3.39(1 \mathrm{H}, \mathrm{brs}, \mathrm{OH}), 3.05(1 \mathrm{H}, \mathrm{d}, J 5.1, \mathrm{CHOH})$, 3.04-2.91 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}$), 2.42 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}$), 2.03-1.01 (11 H, $\mathrm{m}, \mathrm{CHMe}$ and $\mathrm{C}_{6} \mathrm{H}_{10}$) and $0.84(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CHMe}$) (Found: $\mathrm{M}^{+}-\mathrm{PhS}$, 324.1649. $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{~S}$ requires $\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}$, 324.1634); $m / z 324$ ($4 \%, \mathrm{M}-\mathrm{PhS}$), 191 ($70, \mathrm{ChH}_{6} \mathrm{H}_{10} \mathrm{SPh}$), 184 (100, $\mathrm{CH}_{2} \mathrm{NHSO}_{2}$ Tol), 155 (86, SO_{2} Tol), 110 (62, PhSH), $91\left(85, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)$ and $81\left(62, \mathrm{C}_{6} \mathrm{H}_{9}\right)$.

Rearrangement of (2RS,3RS)-N-\{3-Hydroxy-2-methyl-3-[1(phenylthio)cyclohexyl] propyl\}tosylamide anti-24.-In the same way as the sulfonamide syn-24, the sulfonamide anti-24 (43 $\mathrm{mg}, 0.10 \mathrm{mmol}$) gave the sulfonamide anti-39 ($37 \mathrm{~g}, 90 \%$) as an oil, R_{f} [hexane-diethyl ether (1:1)] 0.65; $v_{\max }($ film $) / \mathrm{cm}^{-1} 1600$ and $1580(\mathrm{Ph}), 1325$ and $1150\left(\mathrm{SO}_{2}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.74(2 \mathrm{H}, \mathrm{d}$, $J 8.3, \mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{2}$), 7.35-7.15 ($7 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ and $\mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{2}$), 3.71 (1 H , dd, $J 9.8$ and $7.3, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}$), 3.34 ($1 \mathrm{H}, \mathrm{d}, J 4.2, \mathrm{CHSP} \mathrm{S}_{2}$), $3.17\left(1 \mathrm{H}, \mathrm{dd}, J 9.8\right.$ and $\left.4.8, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{N}} \mathrm{N}\right), 2.42(\mathrm{C} \mathrm{H}, \mathrm{s}, \mathrm{ArMe})$, 2.39-2.15 ($3 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{Me}$ and $\mathrm{C}_{6} \mathrm{H}_{2}$), 2.01-1.24 ($8 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{8}$) and $1.05(3 \mathrm{H}, \mathrm{d}, J 7.2, \mathrm{CHMe})$ (Found: $\mathrm{M}^{+}, 415.1619$. $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{2} \mathrm{~S}_{2}$ requires $\mathrm{M}, 415.1640$); $m / z 415(10 \%, \mathrm{M}), 260$ (29, M $\left.-\mathrm{SO}_{2} \mathrm{Tol}\right), 110(100, \mathrm{PhSH})$ and $91\left(42, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)$; and the allylic sulfide syn-40 ($3.5 \mathrm{mg}, 9 \%$) as an oil, R_{f} [hexanediethyl ether (1:1)] 0.42; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3340$ (NH), 1580 $(\mathrm{Ph}), 1325$ and $1150\left(\mathrm{SO}_{2}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.69(2 \mathrm{H}, \mathrm{d}, J 8.2$, $\left.\mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right), 7.31-7.18\left(7 \mathrm{H}, \mathrm{m}, \mathrm{Ph}\right.$ and $\left.\mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right), 5.23(1 \mathrm{H}$, br $\mathrm{s}, \mathrm{C}=\mathrm{CH}), 4.42(1 \mathrm{H}, \mathrm{t}, J 6.2, \mathrm{NH}), 3.29(1 \mathrm{H}, \mathrm{d}, J 9.2, \mathrm{CHSPh})$, $3.02-2.94\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}\right), 2.78-2.70\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{N}\right), 2.41$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Ar} M e$), $2.14-2.11\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{4} \mathrm{H}\right), 1.96-1.39(8 \mathrm{H}, \mathrm{m}$, CHMe and $\mathrm{C}_{4} \mathrm{H}_{7}$) and $1.10\left(3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CHMe}\right.$) (Found: M^{+}, 415.1646); $m / z 415$ ($0.2 \%, \mathrm{M}$), 306 ($33, \mathrm{M}-\mathrm{PhS}$), 184 (100 , $\left.\mathrm{CH}_{2} \mathrm{NHSO}_{2} \mathrm{Tol}\right), 155\left(84, \mathrm{SO}_{2} \mathrm{Tol}\right)$ and $91\left(76, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)$.
(2RS,3RS)-N-[3-(1-Cyclohex-1-enyl)-2-methyl-3-(phenylthio)propyl] acetamide anti-26.-A solution of the amide syn-17 ($28 \mathrm{mg}, 0.087 \mathrm{mmol}$) and $\mathrm{TsOH}(13 \mathrm{mg}, 0.07 \mathrm{mmol})$ in benzene $\left(1.0 \mathrm{~cm}^{3}\right)$ was heated under reflux in a foil-wrapped flask under argon for 7 min . Water ($20 \mathrm{~cm}^{3}$) was added and the organic layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(4 \times 20 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, evaporated and purified by column chromatography on silica gel (6 g) with ($160: 8: 1$) $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-\mathrm{aq} . \mathrm{NH}_{3}$ as eluent to give the allylic sulfide anti-26 ($24 \mathrm{mg}, 91 \%$) as needles, m.p. $98-101^{\circ} \mathrm{C} ; R_{\mathrm{f}}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ $\mathrm{EtOH}-$ aq. $\left.\mathrm{NH}_{3}(120: 8: 1)\right] \quad 0.46 ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 3430(\mathrm{NH})$, $1655(\mathrm{C}=\mathrm{O})$ and $1580(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.36-7.31(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, 7.30-7.21 ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), $5.68(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 5.19-5.16(1 \mathrm{H}, \mathrm{m}$, $\mathrm{HC}=\mathrm{C}), 3.58\left(1 \mathrm{H}\right.$, ddd, $J 13.8,5.8$ and $\left.4.9, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}\right), 3.36(1 \mathrm{H}$, $\mathrm{dt}, J 13.8$ and $\left.6.4, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{N}\right), 3.25(1 \mathrm{H}, \mathrm{d}, J 10.2, \mathrm{CHSPh}), 2.28-$ $2.20(1 \mathrm{H}, \mathrm{m}, \mathrm{CHC}=\mathrm{C}), 1.98(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}), 1.95-1.43(8 \mathrm{H}, \mathrm{m}$, CH Me and $\mathrm{C}_{4} \mathrm{H}_{7}$) and $0.92\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8, \mathrm{CHMe}\right.$) (Found: M^{+}, 303.1628. $\mathrm{C}_{18} \mathrm{H}_{25}$ NOS requires $\mathrm{M}, 303.1657$); $m / z 303(0.7 \%$, M), $194(100, \mathrm{M}-\mathrm{PhS})$ and $135\left(88, \mathrm{M}-\mathrm{PhS}-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NO}\right)$.
(2RS,3RS)- and (2RS,3SR)-3-Hydroxy-2-methyl-3-\{4'-[1-methyl-4-(phenylthio) piperidyl] propiononitrile 44 .-In the same was for the nitrile 50 (see later), the aldehyde 43 ($6.27 \mathrm{~g}, 27$ mmol) and propiononitrile $\left(2.1 \mathrm{~cm}^{3}, 29 \mathrm{mmol}\right)$ gave, after purification by column chromatography on silica gel (200 g) and elution with (100:8:1) $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-$ aq. NH_{3}, a 2:3:1
mixture of the nitrile $44(6.64 \mathrm{~g}, 86 \%)$, a portion of which was further purified by column chromatography on silica gel $(180 \mathrm{~g})$ and elution with ($100: 8: 1$) $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-$ aq. NH_{3} to give the (2RS,3RS)-nitrile syn-44 (820 mg) as needles after recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane, m.p. $144-145^{\circ} \mathrm{C} ; R_{\mathrm{f}}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ EtOH-aq. $\left.\mathrm{NH}_{3}(100: 8: 1)\right] \quad 0.40 ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2230$ $(\mathrm{CN}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.52-7.48(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.43-7.31(3 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}), 3.62(1 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CHOH}), 3.39(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.12(1 \mathrm{H}$, $\mathrm{qn}, J 7.0, \mathrm{CHMe}), 2.72-2.57\left[4 \mathrm{H}, \mathrm{m}, \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right], 2.33(3 \mathrm{H}, \mathrm{s}$, NMe), 2.09-1.95 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2}$), $1.81-1.51(2 \mathrm{H}, \mathrm{m}$, $\mathrm{NCH}_{2} \mathrm{CH}_{2}$) and $1.42(3 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{CHMe}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ 137.31, 137.23, 129.42, 129.10, 123.40, 74.92, 57.41, 51.10, 51.04, 46.13, 30.44, 30.24, 26.72 and 14.50 (Found: $\mathrm{M}^{+}, 290.1437$. $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{OS}$ requires $\mathrm{M}, 290.1453$); $m / z 290(1 \%, \mathrm{M}), 181$ (100 , $\mathrm{M}-\mathrm{PhS}$) and 126 (36, $\mathrm{M}-\mathrm{PhS}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}$); and the ($2 \mathrm{RS}, 3 \mathrm{SR}$)-nitrile anti-44 (1.29 g) as needles after recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, m.p. $191-193{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-\right.$ aq. $\left.\mathrm{NH}_{3}(100: 8: 1)\right] 0.34 ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2230(\mathrm{CN}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $7.47-7.30(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.85-3.52(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.45(1 \mathrm{H}, \mathrm{q}, J$ 7.3, $\mathrm{C} H \mathrm{Me}$), $3.21(1 \mathrm{H}, \mathrm{s}, \mathrm{CHOH}), 2.84-2.65[4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right], 2.40(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 2.37-2.25\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}\right)$, 2.17-1.93 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2}$), $1.62-1.51\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}\right)$ and $1.47(3 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{CHMe})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ 137.24, 129.57, $129.18,129.10,120.99,76.54,57.02,51.04,50.88,46.14,29.56$, 29.06, 27.19 and 18.39 (Found: $\mathrm{M}^{+}, 290.1434$); m/z 290 (4%, M), 181 ($100, \mathrm{M}-\mathrm{PhS}$) and 126 ($53, \mathrm{M}-\mathrm{PhS}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}$) (Found: C, 66.45; H, 7.7; N, 9.7\%).
(1RS,2SR)-3-Amino-2-methyl-1-\{4'-[1-methyl-4-(phenylthio) piperidyl] propan-1-ol syn-45.-In the same way as for the amine 62 (see later), the nitrile $\operatorname{syn}-44(400 \mathrm{mg}, 1.38 \mathrm{mmol})$ and $\mathrm{LiAlH}_{4}(160 \mathrm{mg}, 4.15 \mathrm{mmol})$ gave the ($2 R S, 3 S R$)-amine $\operatorname{syn}-45$ ($311 \mathrm{mg}, 77 \%$) as needles, m.p. $94-96^{\circ} \mathrm{C} ; R_{\mathrm{f}}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-\right.$ aq. $\left.\mathrm{NH}_{3}(25: 8: 1)\right] \quad 0.13 ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} \quad 1570$ (NH); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.55-7.48(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.37-7.28(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, $3.58(1 \mathrm{H}, \mathrm{d}, J 1.1, \mathrm{CHOH}), 2.82(1 \mathrm{H}, \mathrm{dd}, J 12.5$ and 4.9 , MeNCH), 2.75-2.60 ($5 \mathrm{H}, \mathrm{m}, \mathrm{MeNCH}, \mathrm{MeNCH}_{2}$, and $\mathrm{CH}_{2} \mathrm{NH}_{2}$), $2.49-1.97\left[6 \mathrm{H}, \mathrm{m}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}^{\mathrm{ax}}\right)_{2}, \mathrm{CHMe}, \mathrm{NH}_{2}\right.$ and OH], $2.37(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 1.62(1 \mathrm{H}$, ddd, $J 14.6,5.1$ and $\left.2.5, \mathrm{NCH}_{2} \mathrm{CH}^{\mathrm{eq}}\right), \quad 1.46(1 \mathrm{H}$, ddd, $J 14.6,5.5$ and 2.8 , $\mathrm{NCH}_{2} \mathrm{CH}^{\mathrm{eq}}$) and 1.08 ($3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CHMe}$); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ $137.24,130.55,128.86,128.77,76.54,58.31,51.60,51.35$, 49.36, 46.28, 34.88, 30.51, 30.22 and 12.34 (Found: $\mathbf{M}^{+}-$ $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~N}, 236.1130 . \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NOS}$ requires $\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~N}$, 236.1109); m/z $236\left(1 \%, M-\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~N}\right), 206\left(50, \mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NSPh}\right)$, 185 (100, M - PhS), 156 (56, M - PhS - $\mathrm{CH}_{2} \mathrm{NH}$) and 110 (75, PhSH).
(1RS,2RS)-3-Amino-2-methyl-1-\{4-[1-methyl-4-(phenylthio) piperidyl] \}propan-1-ol anti-45.-In the same way as for the amine 62, the nitrile anti-44 ($500 \mathrm{mg}, 1.72 \mathrm{mmol}$) and LiAlH_{4} $(197 \mathrm{mg}, 5.17 \mathrm{mmol})$ gave the ($2 R S, 3 R S$)-amine anti-45 $(426 \mathrm{mg}$, 84%) as needles, m.p. $131-133^{\circ} \mathrm{C} ; R_{\mathrm{f}}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-\right.$ aq. NH_{3} $(50: 8: 1)] 0.12 ; \quad v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1565(\mathrm{NH}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $7.60-7.50(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.34-7.26(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.49(1 \mathrm{H}, \mathrm{d}, J 3.8$, $\mathrm{CHOH}), 3.15\left(1 \mathrm{H}\right.$, dd, $J 12.5$ and $\left.3.7, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{NH}_{2}\right), 3.10-2.68$ $\left(3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}\right.$ and $\left.\mathrm{NH}_{2}\right), 2.92(1 \mathrm{H}, \mathrm{dd}, J 12.5$ and 5.9 , $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{NH}_{2}\right), 2.66-2.51\left[4 \mathrm{H}, \mathrm{m}, \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right], 2.32(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe})$, 2.30-1.96 ($3 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{Me}$ and $\mathrm{NCH}_{2} \mathrm{CH}_{2}$), $1.66-1.54(2 \mathrm{H}, \mathrm{m}$, $\mathrm{NCH}_{2} \mathrm{CH}_{2}$) and 1.07 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.1, \mathrm{CHMe}$) (Found: $\mathrm{M}^{+}-$ $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~N}$, 236.1099. $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NOS}$ requires $\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~N}$, $236.1109) ; m / z 236\left(2 \%, M-\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~N}\right), 185(100, \mathrm{M}-\mathrm{PhS})$ and 156 ($52, \mathrm{M}-\mathrm{PhS}-\mathrm{CH}_{2} \mathrm{NH}$).
(2RS,3RS)- and (2RS,3SR)-N-(3-Hydroxy-2-methyl-3-\{4'-[1'-methyl-4'-(phenylthio)piperidyl] propyl)tosylamide 46.A mixture of the $(2 R S, 3 R S)$ - and ($2 R S, 3 S R$)-amine $45(1.28 \mathrm{~g}$, $4.35 \mathrm{mmol})$, DMAP ($5 \mathrm{mg}, 0.04 \mathrm{mmol}$) and $\mathrm{TsCl}(871 \mathrm{mg}, 4.57$
$\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(40 \mathrm{~cm}^{3}\right.$) was stirred at room temperature under argon for 20 h . The solvent was evaporated off under reduced pressure and the residue was purified by column chromatography on silica gel (100 g) with ($75: 8: 1$) $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ $\mathrm{EtOH}-\mathrm{aq} . \mathrm{NH}_{3}$ as eluent to give the ($2 R S, 3 S R$)-sulfonamide syn-46 ($360 \mathrm{mg}, 19 \%$) as an oil, $R_{\mathrm{f}}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-\mathrm{aq} . \mathrm{NH}_{3}\right.$ ($100: 8: 1$)] $0.16 ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1325$ and $1150\left(\mathrm{SO}_{2}\right)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.69\left(2 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right), 7.50-7.28(7 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ and $\left.\mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right), 5.09(1 \mathrm{H}$, br s, NH$), 3.50(1 \mathrm{H}, \mathrm{s}, \mathrm{CHOH}), 3.21$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.96\left(1 \mathrm{H}, \mathrm{dd},{ }^{*} J 13.0\right.$ and $\left.6.5, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}\right), 2.79$ $\left(1 \mathrm{H}, \mathrm{dd}, J 13.0\right.$ and $\left.5.4, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{N}\right), 2.76-2.61[4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right], 2.41$ ($\left.3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}\right), 2.39$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), 2.30-2.07 ($2 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{Me}$ and $\mathrm{NCH}_{2} \mathrm{CH}^{\mathrm{ax}}$), $1.93-1.81(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}^{\text {ax }}\right), 1.63\left(1 \mathrm{H}, \mathrm{dd}, J 14.5\right.$ and $\left.2.6, \mathrm{NCH}_{2} \mathrm{CH}^{\text {eq }}\right), 1.31$ $\left(1 \mathrm{H}, \mathrm{dd}, J 14.5\right.$ and $2.5, \mathrm{NCH}_{2} \mathrm{C} H^{\text {eq }}$) and $0.96(3 \mathrm{H}, \mathrm{d}, J 6.8$, CHMe) (Found: $\mathrm{M}^{+}-\mathrm{PhSH}$, 339.1742. $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}, 339.1742$); $m / z 339(1 \%, \mathrm{M}-\mathrm{PhS})$, 110 ($100, \mathrm{PhSH}$), $96\left(55, \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}\right)$ and $91\left(36, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)$; and a 2:7:1 (syn:anti) mixture of the sulfonamide $46(430 \mathrm{mg}, 22 \%$) and the ($2 R S, 3 R S$)-sulfonamide anti-46 ($1.015 \mathrm{~g}, 52 \%$) as an oil, $R_{\mathrm{f}}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ - EtOH -aq. $\left.\mathrm{NH}_{3}(100: 8: 1)\right] 0.28 ; v_{\max }\left(\mathrm{CHCl}_{3}\right) /$ $\mathrm{cm}^{-1} 3300(\mathrm{NH})$ and 1325 and $1150\left(\mathrm{SO}_{2}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.72$ ($2 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{2}$), $7.44-7.27\left(7 \mathrm{H}, \mathrm{m}, \mathrm{Ph}\right.$ and $\mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{2}$), $5.48(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 3.55(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.18(1 \mathrm{H}, \mathrm{d}, J 5.0$, $\mathrm{CHOH}), 3.07-2.90\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{NH}\right), 2.79-2.44[4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right], 2.41(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar} M e), 2.38(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 2.10-1.91$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{Me}$ and $\mathrm{NCH}_{2} \mathrm{CH}^{\mathrm{ax}}$), $1.81-1.69(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}^{\mathrm{ax}}\right), 1.55\left(1 \mathrm{H}\right.$, dd, $J 14.5$ and $\left.2.4, \mathrm{NCH}_{2} \mathrm{CH}^{\text {eq }}\right), 1.26$ $\left(1 \mathrm{H}, \mathrm{dd}, J 14.5\right.$ and $2.4, \mathrm{NCH}_{2} \mathrm{CH}^{\mathrm{eq}}$) and $0.90(3 \mathrm{H}, \mathrm{d}, J 6.9$, CHMe) (Found: $\mathrm{M}^{+}-\mathrm{PhSH}$, 339.1747. $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires $\left.\mathbf{M}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}, 339.1742\right) ; m / z 339(25 \%, \mathrm{M}-\mathrm{PhS}), 110$ $(100, \mathrm{PhSH}), 96\left(53, \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}\right)$ and $91\left(37, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)$.

Rearrangement of (2RS,3SR)-N-(3-Hydroxy-2-methyl-3-\{4-[1-methyl-4-(phenylthio) piperidyl] propyl)tosylamide syn-
46.-In the same way as for the pyrrolidine 53 (see later), the sulfonamide syn- $\mathbf{4 6}$ ($100 \mathrm{mg}, 0.22 \mathrm{mmol}$) and TMSOTf $\left(47 \mathrm{~mm}^{3}\right.$, 0.25 mmol) gave, after purification by column chromatography on silica gel (12 g) and elution with ($150: 8: 1$) $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-$ aq. NH_{3} the pyrrolidine syn-47 ($85 \mathrm{mg}, 89 \%$) as an oil, R_{f} $\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-EtOH-aq. $\left.\mathrm{NH}_{3}(100: 8: 1)\right] 0.44 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ $1580(\mathrm{Ph})$ and 1325 and $1150\left(\mathrm{SO}_{2}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.74(2 \mathrm{H}, \mathrm{d}, J$ $\left.8.3, \mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right), 7.37-7.15\left(7 \mathrm{H}, \mathrm{m}, \mathrm{Ph}\right.$ and $\left.\mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right), 3.82(1 \mathrm{H}$, $\mathrm{d}, J 4.8, \mathrm{C} H \mathrm{SPh}), 3.76\left(1 \mathrm{H}, \mathrm{dd}, J 9.1\right.$ and $\left.7.5, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}\right), 3.12$ ($1 \mathrm{H}, \mathrm{dd}, J 11.0$ and $\left.9.1, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{N}\right), 2.96-2.59\left[5 \mathrm{H}, \mathrm{m}, \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right.$ and piperidine $\left.\mathrm{NCH}_{2} \mathrm{CH}\right], 2.42(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar} \mathrm{Me}), 2.27(3 \mathrm{H}, \mathrm{s}$, NMe), 2.22-1.75 (4 H, m, $\mathrm{CH} \mathrm{Me}, \mathrm{NCH}_{2} \mathrm{CH}_{2}$ and $\left.\mathrm{NCH}_{2} \mathrm{CH}\right)$ and $1.02(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CHMe})$ (Found: $\mathrm{M}^{+}, 430.1735$. $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires $\left.\mathrm{M}, 430.1749\right)$; $m / z 420(4 \%, \mathrm{M}), 275$ ($38, \mathrm{M}-\mathrm{SO}_{2} \mathrm{Tol}$), 165 (22, $\mathrm{M}-\mathrm{SO}_{2} \mathrm{Tol}-\mathrm{PhSH}$) and 70 ($100, \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}$).

Rearrangement of 2(RS,3RS)-N-(3-Hydroxy-2-methyl-3-\{4-[1-methyl-4-(phenylthio)piperidyl]\}propyl)tosylamide anti-46.-In the same way as for the pyrrolidine 53, the sulfonamide anti-46 ($200 \mathrm{mg}, 0.45 \mathrm{mmol}$) and TMSOTf ($95 \mathrm{~mm}^{3}, 0.49 \mathrm{mmol}$) gave the pyrrolidine anti-47 ($184 \mathrm{mg}, 96 \%$) as an oil, R_{f} $\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-EtOH-aq. $\left.\mathrm{NH}_{3}(100: 8: 1)\right] \quad 0.44 ; \quad v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ 1600 and $1580(\mathrm{Ph})$ and 1330 and $1150\left(\mathrm{SO}_{2}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $7.73\left(2 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right), 7.37-7.19(7 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ and $\left.\mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right), 3.70\left(1 \mathrm{H}, \mathrm{dd}, J 10.4\right.$ and $\left.7.7, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}\right), 3.22(1 \mathrm{H}$, dd, $J 10.4$ and $\left.5.2, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{N}\right), 3.17-3.15(1 \mathrm{H}, \mathrm{m}, \mathrm{CHSPh}), 3.02-$ $2.95(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}), 2.83-2.74(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}), 2.69-2.16(4 \mathrm{H}, \mathrm{m}$, CH Me and $\mathrm{NCH}_{2} \mathrm{CH}$), $2.42(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar} \mathrm{Me}), 2.33(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe})$, 2.07-1.85 ($3 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}$ and $\mathrm{NCH}_{2} \mathrm{CH}_{2}$) and $1.07(3 \mathrm{H}, \mathrm{d}$,

[^1]$J 7.0, \mathrm{CHMe}$) (Found: $\mathrm{M}^{+}, 430.1744$); $m / z 430(4 \%, \mathrm{M}), 321$ ($12, \mathrm{M}-\mathrm{PhS}$), $275\left(28, \mathrm{M}-\mathrm{SO}_{2} \mathrm{Tol}\right)$ and $70\left(100, \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}\right)$.
(2RS,3SR)-2-Methyl-3-[4-(1-methyl-1,2,3,6-tetrahydropiperi-dyl)]-3-phenylthiopropylamine 48.-A solution of the amine anti-45 ($35 \mathrm{mg}, 0.12 \mathrm{mmol}$) and TsOH ($138 \mathrm{mg}, 0.72 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1 \mathrm{~cm}^{3}\right)$ was heated under reflux in a foil-wrapped flask under argon for 6 h . The solvent was evaporated off under reduced pressure and the residue was purified by column chromatography on silica gel (3 g) with ($50: 8: 1$) $\mathrm{CH}_{2} \mathrm{Cl}_{2-}$ EtOH-aq. NH_{3} as eluent to give the amine $\mathbf{4 8}(27 \mathrm{mg}, 82 \%)$ as an oil, $R_{\mathrm{f}}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-\right.$ aq. $\left.\mathrm{NH}_{3}(25: 8: 1)\right] 0.37 ; v_{\text {max }}(\mathrm{film}) /$ $\mathrm{cm}^{-1} 3340$ and $3260(\mathrm{NH})$ and $1580(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $7.57-7.16(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.24$ ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{HC}=\mathrm{C}$), 3.51 ($1 \mathrm{H}, \mathrm{d}, J$ $9.0, \mathrm{C} H \mathrm{SPh}), 2.94\left(1 \mathrm{H}, \mathrm{brd}, J 14.7, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{C}=\mathrm{C}\right), 2.79(1 \mathrm{H}$, dd, $J 12.8$ and 4.4, $\mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{C}=\mathrm{C}$), 2.73-2.31 ($5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{NH}_{2}$ and $\left.\mathrm{MeNCH}_{2} \mathrm{CH}\right), 2.28(3 \mathrm{H}, \mathrm{m}, \mathrm{NMe}), 2.23-2.05(1 \mathrm{H}, \mathrm{m}$, ring $\left.\mathrm{NCH}_{2} \mathrm{CH}\right), 2.04-1.70\left(3 \mathrm{H}, \mathrm{m}, \mathrm{NH}_{2}\right.$ and CH Me$)$ and $1.15(3 \mathrm{H}$, d, J 6.7, CHMe) (Found: $\mathrm{M}^{+}, 276.1640 . \mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{~S}$ requires M, 276.1660); $m / z 276(0.2 \%, \mathrm{M}), 167(100, \mathrm{M}-\mathrm{PhS})$ and 110 ($61, \mathrm{PhSH}$).
(3RS,4RS)- and (3RS,4SR)-3-Hydroxy-6-methyl-4-(phenylthio)heptanonitrile 50.-Butyllithium ($3.5 \mathrm{~cm}^{3}, 5.3 \mathrm{mmol}$) was added to a solution of diisopropylamine ($0.74 \mathrm{~cm}^{3}, 5.3 \mathrm{mmol}$) in dry THF ($20 \mathrm{~cm}^{3}$) under argon at $-5^{\circ} \mathrm{C}$. After 30 min the solution was cooled to $-78^{\circ} \mathrm{C}$ and a solution of acetonitrile ($0.26 \mathrm{~cm}^{3}, 5.05 \mathrm{mmol}$) in dry THF ($10 \mathrm{~cm}^{3}$) was added. After 40 min a solution of the aldehyde $49^{7}(1.0 \mathrm{~g}, 4.8 \mathrm{mmol})$ in dry THF $\left(5 \mathrm{~cm}^{3}\right)$ was added. After a further 20 min the mixture was poured into saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}\left(50 \mathrm{~cm}^{3}\right)$ and was extracted with diethyl ether ($3 \times 40 \mathrm{~cm}^{3}$). The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, evaporated, and purified by column chromatography on silica gel (50 g) with ($4: 1$) hexane-diethyl ether as eluent to give a 3:1 mixture of the nitrile $50(750 \mathrm{mg}$, 62%) as an oil, R_{f} [hexane-diethyl ether (1:1)] 0.38; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3440(\mathrm{OH}), 2445(\mathrm{CN})$, and $1580(\mathrm{Ph})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.47-7.41(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.37-7.28$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 3.993.92 and $3.88-3.80(1 \mathrm{H}, \mathrm{m}$, and $\mathrm{m}, \mathrm{CHOH}), 3.28$ and $3.22(1 \mathrm{H}$, dt and $\mathrm{dt}, J 10.4$ and 4.0 , and 9.8 and $5.5, \mathrm{CHSPh}$), 2.76-2.50 (3 $\mathrm{H}, \mathrm{m}, \mathrm{OH}$ and $\mathrm{CH}_{2} \mathrm{CN}$), 2.09-1.95 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHMe} 2$), 1.54-1.32 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CS}$) and 0.99-0.92 ($6 \mathrm{H}, \mathrm{m}, \mathrm{CHMe} \mathrm{e}_{2}$); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right.$) 133.28, 132.80, 132.66, 132.41, 129.35, 129.29, 127.97, 127.86, 117.38, 69.27, 69.00, 53.34, 53.13, 39.36, 37.49, 25.43, 25.36, 23.40, 23.13, 22.96, 22.49, 21.42 and 21.21 (Found: M^{+}, 249.1172. $\mathrm{C}_{14} \mathrm{H}_{19}$ NOS requires $\mathrm{M}, 249.1188$); $m / z 249$ (10%, M), $179\left(34, \mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{NO}\right), 123(100, \mathrm{M}-\mathrm{PhS}-\mathrm{OH})$ and 110 (27, PhSH).
(3RS,4RS)- and (3RS,4SR)-1-Amino-6-methyl-4-(phenylthio)-heptan-3-ol 51 .-Lithium aluminium hydride $(300 \mathrm{mg}, 7.9$ $\mathrm{mmol})$ was added to a solution of the nitrile $50(670 \mathrm{mg}, 2.7$ mmol) in dry diethyl ether ($12 \mathrm{~cm}^{3}$) under argon at $0^{\circ} \mathrm{C}$. After 5 h the mixture was poured into aq. $\mathrm{NaOH}\left(50 \mathrm{~cm}^{3} ; 0.2 \mathrm{~mol}\right.$ dm^{-3}) and aq. sodium potassium tartrate ($50 \mathrm{~cm}^{3} ; 0.1 \mathrm{~mol}$ dm^{-3}) and was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(4 \times 40 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, evaporated, and purified by column chromatography on silica gel $(21 \mathrm{~g})$ with elution with (75:8:1) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-EtOH-aq. NH_{3} to give a $2: 1$ mixture of the amine 51 ($526 \mathrm{mg}, 77 \%$) as an oil, $R_{\mathrm{f}}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ EtOH-aq. $\left.\mathrm{NH}_{2}(75: 8: 1)\right] 0.11 ; v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 3360$ and 3280 $(\mathrm{NH}), 3170(\mathrm{OH})$ and $1580(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.46-7.39(2 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}), 7.30-7.16(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.93-3.83(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 3.21$ and $3.12(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{SPh}), 3.10-3.03\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.89-$ $2.77\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 2.71-2.49\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 2.01-1.90$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{Me}_{2}$), 1.74-1.39 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CS}$ and $\mathrm{CH}_{2} \mathrm{CO}$), 0.92 and $0.92(3 \mathrm{H}, \mathrm{d}$ and d, $J 6.6$ and $6.7, \mathrm{Me})$ and 0.88 and 0.87 ($3 \mathrm{H}, \mathrm{d}$ and d, $J 6.5$ and $6.5, \mathrm{Me}$); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ 135.93, 135.88,
$131.61,131.09,128.84,126.63,126.39,74.55,74.07,54.50$, $53.32,40.88,40.56,39.44,39.17,34.77,33.83,25.47,23.38$, 23.30, 21.68 and 21.58 (Found: $\mathbf{M}^{+}+\mathrm{H}, 254.1573 . \mathrm{C}_{14} \mathrm{H}_{24}{ }^{-}$ NOS requires $\mathrm{M}+\mathrm{H}, 254.1579) ; m / z 254(0.3 \%, \mathrm{M}+\mathrm{H})$, 253 ($0.1, \mathrm{M}$), $180\left(12, \mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{NO}\right), 123\left(26, \mathrm{C}_{8} \mathrm{H}_{13} \mathrm{~N}\right)$ and $74\left(100, \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{NO}\right)$.
(3RS,4RS)- and (3RS,3SR)-N-[3-Hydroxy-6-methyl-4-(phenylthio)heptyl]tosylamide 52.-Toluene-p-sulfonyl chloride (230 $\mathrm{mg}, 1.21 \mathrm{mmol}$) was added to a mixture of the amine $51(292 \mathrm{mg}$, $1.15 \mathrm{mmol})$ and DMAP ($146 \mathrm{mg}, 1.21 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7$ cm^{3}) under argon at room temperature. After 3 h the solution was poured into brine $\left(50 \mathrm{~cm}^{3}\right)-\mathrm{HCl}\left(5 \mathrm{~cm}^{3} ; 0.01 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right)$ and was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3+40 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to give an oil, which was triturated in diethyl ether to give a solid $(437 \mathrm{mg}$, 93%) of which one-half (235 mg) was purified by HPLC with ($10: 12: 1$) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane-diethyl ether as eluent to give the (3RS,4SR)-sulfonamide anti- 52 ($141 \mathrm{mg}, 56 \%$) as needles, m.p. $104-105{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}}$ [diethyl ether:hexane (2:1)] 0.35; $v_{\max }{ }^{-}$ $\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3300(\mathrm{NH})$ and $1580(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.71$ $\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3, \mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right), 7.40-7.24\left(7 \mathrm{H}, \mathrm{m}, \mathrm{Ph}\right.$ and $\left.\mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right)$, $5.21-4.95(1 \mathrm{H}, \mathrm{brs}, \mathrm{NH}), 3.63(1 \mathrm{H}, \mathrm{dt}, J 10.3$ and $2.8, \mathrm{CHOH}$), 3.19-3.08 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CHSPh}$ and $\mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$), 3.03-2.94 ($1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 2.41(3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}), 2.11-1.68(1 \mathrm{H}, \mathrm{brs}, \mathrm{OH}), 1.93-$ $1.82\left(1 \mathrm{H}\right.$, sym. m, $\mathrm{CH} \mathrm{Me}_{2}$), $1.63-1.22\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 0.92$ ($3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{Me}$) and $0.85(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ 143.21, 136.98, 134.32, 132.03, 129.64, 129.16, 127.37, 127.05, 71.34, 54.90, 41.48, 37.85, 31.99, 25.49, 23.36, 21.48 and 21.35 (Found: M^{+}, 407.1549. $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}_{2}$ requires $\mathrm{M}, 407.1589$); $m / z 407(4 \%, M), 228\left(61, M-\mathrm{C}_{5} \mathrm{H}_{10}\right.$ SPh), 184 (100 , $\mathrm{CH}_{2} \mathrm{NHSO}_{2} \mathrm{Tol}$), $180\left(90, \mathrm{C}_{5} \mathrm{H}_{11} \mathrm{SPh}\right), 155\left(59, \mathrm{SO}_{2} \mathrm{Tol}\right), 123$ (77, $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{~N}$), 110 (52, PhSH) and 91 ($73, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}$); and the (3RS,4RS)-sulfonamide syn-52 as a $5: 1(3 R S, 4 R S):(3 R S, 4 S R)$ mixture ($84 \mathrm{mg}, 33 \%$) as an oil, R_{f} [diethyl ether-hexane ($2: 1$)] $0.35 ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3300(\mathrm{NH})$ and $1580(\mathrm{Ph}) ; \delta_{\mathrm{H}^{-}}$ $\left(\mathrm{CDCl}_{3}\right)$ 7.74-7.70 ($2 \mathrm{H}, \mathrm{m}, \mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{2}$), 7.41-7.26 (7 H, m, Ph and $\left.\mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right), 5.25-5.02(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 3.48(1 \mathrm{H}, \mathrm{td}, J 6.8$ and $2.8, \mathrm{CHOH}), 3.16-3.11(1 \mathrm{H}, \mathrm{m}, \mathrm{CHSPh}), 3.04-3.01(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.93-2.85\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 2.41(3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe})$, 2.10-1.93 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{Me}_{2}$), 1.79-1.48 ($4 \mathrm{H}, \mathrm{m}, \mathrm{OH}, \mathrm{CH}_{2} \mathrm{CH}$ and $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}\right), 1.30-1.21\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}\right), 0.89(3 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 6.7, Me) and $0.82(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 143.23$, 136.90, 133.41, 132.73, 129.64, 129.05, 127.55, 127.05, 72.03, $55.35,41.08,39.66,32.64,25.32,23.34,21.48$ and 21.35 (Found: $\mathrm{M}^{+}, 407.154$ 39. $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}_{2}$ requires $\mathrm{M}, 407.1589$); $m / z 407$ $(4 \%, \mathrm{M}), 228\left(61, \mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{SPh}\right), 184$ ($100, \mathrm{CH}_{2} \mathrm{NHSO}_{2} \mathrm{Tol}$), $180\left(90, \mathrm{C}_{5} \mathrm{H}_{11} \mathrm{SPh}\right), 155\left(59, \mathrm{SO}_{2} \mathrm{Tol}\right), 123\left(77, \mathrm{C}_{8} \mathrm{H}_{13} \mathrm{~N}\right), 110$ (52, PhSH) and $91\left(73, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)$.

Rearrangement of (3RS,4SR)-N-[3-Hydroxy-6-methyl-4(phenylthio) heptyl]tosylamide anti-52.-TMSOTf $\left(23 \mathrm{~mm}^{3}, 0.12\right.$ mmol) was added to a solution of the sulfonamide anti-52 (44 $\mathrm{mg}, 0.11 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{~cm}^{3}\right)$ under argon at $-78{ }^{\circ} \mathrm{C}$. The solution was allowed to warm slowly to room temperature over a period of 4 h . The solvent was evaporated off under reduced pressure and the residue was purified by column chromatography on silica gel (6 g) and eluted with ($1: 1$) hexanediethyl ether to give the pyrrolidine anti- $53(40.5 \mathrm{mg}, 96 \%)$ as an oil, R_{f} [diethyl ether-hexane (1:1)] $0.58 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 1600$ and $1580(\mathrm{Ar})$ and $1340\left(\mathrm{SO}_{2}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.74(2 \mathrm{H}, \mathrm{d}, J 8.3$, $\left.\mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right), 7.35\left(2 \mathrm{H}, \mathrm{m}, \mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right), 7.24-7.20(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, $7.11-7.06(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.58-3.34\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}, \mathrm{CHN}\right.$ and CHSPh), 2.47(3H, s, ArMe), 2.25-2.20(1 H, m, CH Me ${ }_{2}$), $1.78-$ $1.67\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.44-1.38\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 0.88(3 \mathrm{H}, \mathrm{d}, J 6.4$, Me) and 0.73 ($3 \mathrm{H}, \mathrm{d}, J 6.4, \mathrm{Me}$); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 143.24,133.95$, $133.70,132.02,129.40,128.83,127.82,127.35,64.13,51.00,47.01$, 46.05, 29.49, 25.47, 23.42, 21.48 and 21.17 (Found: \mathbf{M}^{+},
389.1471. $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{~S}_{2}$ requires $\mathrm{M}, 389.1483$); $m / z 389$ (3%, M), $332\left(86, \mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right), 161\left(51, \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{SPh}\right), 155\left(48, \mathrm{SO}_{2}\right.$ Tol $)$ and $91\left(100, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)$.

Rearrangement of (3RS,4RS)-N-[3-Hydroxy-6-methyl-4(phenylthio)heptyl]tosylamide syn-52.-In the same way as for the pyrrolidine anti-53, the $5: 1$ (syn:anti) mixture of the sulfonamide 52 ($44 \mathrm{mg}, 0.11 \mathrm{mmol}$) and TMSOTf ($23 \mathrm{~mm}^{3}, 0.12$ mmol) gave a $5: 1$ (syn:anti) mixture of the pyrrolidine 53 (40.5 $\mathrm{mg}, \mathbf{9 6 \%}$) as an oil, R_{f} [diethyl ether-hexane (1:1)] 0.55; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 1580(\mathrm{Ar})$ and $1340\left(\mathrm{SO}_{2}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.75-7.67$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{2}$), 7.37-7.10 (7 H, m, Ph and $\mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{2}$), 3.92-3.84 (1 H, m, SCCHN), 3.55-3.38 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}$), 2.91 (1 $\mathrm{H}, \mathrm{dt}, J 10.9$ and 6.7, CHSPh), 2.43 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}$), 1.99-1.77 (3 $\mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{Me}_{2}$ and $\left.\mathrm{CH}_{2}\right), 1.42-1.33\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 0.94(3 \mathrm{H}, \mathrm{d}$, $J 6.7$, Me) and $0.86(3 \mathrm{H}, \mathrm{d}, J 6.4, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 143.60,135.10$, $134.86,130.38,129.79,128.97,127.33,126.87,60.74,48.38$, 46.18, 38.52, 29.98, 24.17, 23.48, 21.66 and 21.53 (Found: M^{+}, 389.1493. $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{~S}_{2}$ requires $\mathrm{M}, 389.1483$); $m / z 389(16 \%$, M), $332\left(100, \mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right), 161\left(45, \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{SPh}\right), 98(63)$ and 91 (82, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}$).

4-Methyl-5-oxo-4-(phenylthio)hexanonitrile 55.-A solution of the ketone $54^{15}(240 \mathrm{mg}, 1.33 \mathrm{mmol})$ in dry THF $\left(2 \mathrm{~cm}^{3}\right)$ was added to light petroleum-washed NaH ($59 \mathrm{mg}, 1.47 \mathrm{mmol}$) suspended in dry THF ($6 \mathrm{~cm}^{3}$) under argon at room temperature. After 30 min the mixture was heated to reflux and a mixture of 3-bromopropiononitrile $\left(0.132 \mathrm{~cm}^{3}, 1.6 \mathrm{mmol}\right)$ and tetrabutylammonium iodide ($147 \mathrm{mg}, 0.4 \mathrm{mmol}$) in THF ($1 \mathrm{~cm}^{3}$) was added. After 30 min saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}\left(50 \mathrm{~cm}^{3}\right)$ was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20$ $\left.\mathrm{cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, evaporated, and purified by column chromatography on silica gel (25 g) with (2:1) light petroleum $\left(40-60^{\circ} \mathrm{C}\right)$-diethyl ether as eluent to give the ketone $55\left(257 \mathrm{mg}, 83 \%\right.$) as an oil, R_{f} [light petroleum (40$60^{\circ} \mathrm{C}$)-diethyl ether (2:1)] 0.16; $v_{\max }($ film $) / \mathrm{cm}^{-1} 2250(\mathrm{CN})$, $1690(\mathrm{C}=\mathrm{O})$ and $1580(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.42-7.29(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, 2.53-2.32 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CN}$), 2.41 ($3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}$), 2.13-1.90 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CS}\right)$ and $1.46(3 \mathrm{H}, \mathrm{s}, \mathrm{PhSCMe}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ 136.06, 129.93, 129.24, 129.19, 119.43, 58.82, 31.35, 24.78, 20.68 and 12.85 (Found: $\mathrm{M}^{+}, 233.0880 . \mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NOS}$ requires M , 233.0875); $m / z 233$ ($0.8 \%, \mathrm{M}$) and 190 ($100, \mathrm{M}$ - COMe).
(2RS,3RS)- and (2RS,3SR)-6-Amino-3-methyl-3-(phenyl-thio)hexan-2-ol 56.-In the same way as for the amine 51, the ketone 55 ($206 \mathrm{mg}, 0.88 \mathrm{mmol}$) and $\mathrm{LiAlH}_{4}(133 \mathrm{mg}, 3.5 \mathrm{mmol})$ gave the amine $56\left(118 \mathrm{mg}, 56 \%, 2.2: 1 \mathrm{syn}\right.$: anti) as an oil, R_{f} $\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-EtOH-aq. $\left.\mathrm{NH}_{3}(50: 8:)\right] 0.18 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3355$ and $3285(\mathrm{NH}$ and OH$)$ and $1580(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.52-7.48$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), $7.37-7.28(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.62$ and $3.54(1 \mathrm{H}, \mathrm{q}$ and q , $J 6.4$, and $6.3, \mathrm{CHOH}), 2.69\left(2 \mathrm{H}\right.$, br t $\left., J 6.4, \mathrm{NCH}_{2}\right), 2.00(3 \mathrm{H}$, br s, OH and NH_{2}), $1.95-1.84(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.68-1.41(3 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}\right), 1.16$ and $1.15(3 \mathrm{H}, \mathrm{d}$ and d, $J 6.3$ and $6.4, \mathrm{CHMe})$ and 1.13 and $1.10(3 \mathrm{H}, \mathrm{s}$, and $\mathrm{s}, \mathrm{PhSCMe}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ 137.48, $137.08,130.36,130.26,129.07,129.00,128.79,128.67,70.52$, $70.11,60.16,58.82,58.18,42.55,42.43,33.45,31.80,28.28,28.06$, $22.87,18.41$ and 16.33 (Found: $\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}, 195.1074$. $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NS}$ requires $\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}, 195.1082$); $m / z 195$ (31%, $\left.\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}\right), 110(97, \mathrm{PhSH}), 86\left(100, \mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}-\mathrm{PhS}\right)$ and $84\left(61, \mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}-\mathrm{PhSH}\right)$.
(4RS,5RS)- and (4RS,5SR)-N-[5-Hydroxy-4-methyl-4(phenylthio)hexyl]tosylamide 57.-In the same way as for the sulfonamide 52 , the amine $56(82 \mathrm{mg}, 0.34 \mathrm{mmol})$ and $\mathrm{TsCl}(69$ $\mathrm{mg}, 0.36 \mathrm{mmol}$) gave, after purification by HPLC and elution with ($10: 1$) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-diethyl ether, the $(4 R S, 5 R S)$-sulfonamide syn-57 ($86 \mathrm{mg}, 64 \%$) as an oil, $R_{\mathrm{f}}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-diethyl ether (10:1)] $0.29 ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3460(\mathrm{OH}), 3250(\mathrm{NH}), 1595$ (Ar) and
$1150\left(\mathrm{SO}_{2}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.71\left(2 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right), 7.45-$ $7.27\left(7 \mathrm{H}, \mathrm{m}, \mathrm{Ph}\right.$ and $\left.\mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right), 4.35(1 \mathrm{H}$, br t, $J 5.9, \mathrm{NH}), 3.44$ ($1 \mathrm{H}, \mathrm{q}, J 6.4, \mathrm{CHMe}$), $2.92\left(2 \mathrm{H}, \mathrm{q},{ }^{*} J 6.7, \mathrm{NCH}_{2}\right), 2.41$ (3 H , s, $\operatorname{ArMe}), 1.98-1.88(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.70-1.58\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ and OH), 1.39-1. 11 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHCMe}$), 1.08 ($3 \mathrm{H}, \mathrm{d}, J 6.4, \mathrm{CHMe}$) and $1.05(3 \mathrm{H}, \mathrm{s}, \mathrm{PhSCMe})$ (Found: $\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}, 349.1187$. $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}_{2}$ requires $\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}, 349.1171$); m/z $349(2 \%$, $\left.\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}\right), 155\left(58, \mathrm{SO}_{2} \mathrm{Tol}\right), 110(60, \mathrm{PhSH})$ and 91 (100, $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)$; and the ($4 R S, 5 S R$)-sulfonamide anti-57 (29 mg, 22%) as an oil, $R_{f}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-diethyl ether (10:1)] 0.25 ; $v_{\text {max }}-$ (film)/ $\mathrm{cm}^{-1} 3470(\mathrm{NH}), 3260(\mathrm{OH}), 1600(\mathrm{Ar})$ and $1155\left(\mathrm{SO}_{2}\right)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.75\left(2 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right), 7.47-7.28(7 \mathrm{H}, \mathrm{m}$, Ph and $\left.\mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right), 4.36(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 3.52(1 \mathrm{H}, \mathrm{q}, J 6.3$, $\mathrm{CHMe}), 3.00-2.92\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 2.24(3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}), 1.85-$ $1.49\left(5 \mathrm{H}, \mathrm{m}, \mathrm{OH}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.09(3 \mathrm{H}, \mathrm{d}, J 6.3, \mathrm{CH} M e)$ and 1.01 ($3 \mathrm{H}, \mathrm{s}, \mathrm{PhSCMe}$) (Found: $\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}, 349.1169$. $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}_{2}$ requires $\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}, 349.1171$); m/z 349 $\left(18 \%, \mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}\right), 155\left(66, \mathrm{SO}_{2} \mathrm{Tol}\right), 110(62, \mathrm{PhSH})$ and 91 ($100, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}$).

Rearrangement of (4RS,5RS)-N-[5-Hydroxy-4-methyl-4(phenylthio)hexyl]tosylamide syn-57.-In the same way as for the pyrrolidine 53 , the sulfonamide $\operatorname{syn}-57(38 \mathrm{mg}, 0.097 \mathrm{mmol})$ and TMSOTf $\left(0.02 \mathrm{~cm}^{3}, 0.104 \mathrm{mmol}\right)$ gave the pyrrolidine 58 $(32.5 \mathrm{mg}, 90 \%)$ as an oil, $R_{\mathrm{f}}\left[\right.$ light petroleum $\left(40-60^{\circ} \mathrm{C}\right)$-diethyl ether (2:1)] 0.44; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 1600$ and $1580(\mathrm{Ar})$ and 1325 and $1150\left(\mathrm{SO}_{2}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.72\left(2 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right)$, 7.46-7.42 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.38-7.17 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ and $\mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{2}$), $4.12(1 \mathrm{H}, \mathrm{q}, J 6.9, \mathrm{CHSPh}), 3.39-3.27\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.40$ ($3 \mathrm{H}, \mathrm{s}, \operatorname{ArMe}$), 2.28-2.14 (1 H, m, CH), $1.87-1.51$ ($3 \mathrm{H}, \mathrm{m}$, CHCH_{2}), 1.59 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NCMe}$) and $1.46(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CHMe}$); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 142.89,137.93,136.12,131.03,129.40,128.94$, $127.27,126.53,71.58,53.05,49.96,35.68,25.95,23.27,21.44$ and 17.81 (Found: $\mathrm{M}^{+}, 375.1318 . \mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{~S}_{2}$ requires M , 375.1327); m/z 375 (2% M), 266 (19, M - PhSH), 238 (100, $\left.\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{SPh}\right)$ and $91\left(51, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)$.

Rearrangement of (4RS,5SR)-N-[5-Hydroxy-4-methyl-4(phenylthio)hexyl]tosylamide anti-57.-In the same way as for the pyrrolidine 53 , the sulfonamide anti-57 ($24 \mathrm{mg}, 0.06 \mathrm{mmol}$) and TMSOTf ($12.5 \mathrm{~mm}^{3}, 0.064 \mathrm{mmol}$) gave the pyrrolidine 59 $(22.5 \mathrm{mg}, 98 \%)$ as an oil, R_{f} [light petroleum $\left(40-60^{\circ} \mathrm{C}\right)$-diethyl ether $(2: 1)] 0.36 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} \quad 1600\left(\mathrm{SO}_{2}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $7.91\left(2 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right), 7.58-7.48(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.37-7.21$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ and $\mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{2}$), $4.28(1 \mathrm{H}, \mathrm{q}, J 6.8, \mathrm{CHSPh}), 3.46$ ($1 \mathrm{H}, \mathrm{br} \operatorname{dd}, J 12.8$ and $\left.3.6, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}\right), 2.92(1 \mathrm{H}, \mathrm{td}, J 12.8$ and 3.0, $\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{N}$), $2.41(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar} M e), 2.19-2.10(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$, 1.66-1.44 ($3 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}$) $1.12(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9, \mathrm{CHMe})$ and 1.04 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NCMe}$) (Found: $\mathrm{M}^{+}, 375.1325$); $m / z 375(10 \%, \mathrm{M}), 266$ ($100, \mathrm{M}-\mathrm{PhSH}), 238$ ($\left.41, \mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{SPh}\right), 110$ (58, PhSH) and 91 ($97, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}$).

3,5-Dimethyl-3-(phenylthio)hexan-2-one 60.-A solution of the ketone $54(910 \mathrm{mg}, 5.06 \mathrm{mmol})$ in dry THF ($4 \mathrm{~cm}^{3}$) was added to light-petroleum-washed $\mathrm{NaH}(212 \mathrm{mg}, 5.3 \mathrm{mmol})$ suspended in dry THF ($25 \mathrm{~cm}^{3}$) under argon at room temperature. After 30 min the mixture was heated to reflux and isobutyl iodide ($0.58 \mathrm{~cm}^{3}, 5.06 \mathrm{mmol}$) was added. After 46 h , saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}\left(50 \mathrm{~cm}^{3}\right)$ was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 30 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, evaporated, and purified by column chromatography on silica gel $(100 \mathrm{~g})$ with $(20: 1)$ light petroleum $\left(40-60^{\circ} \mathrm{C}\right)$-diethyl ether as eluent to give the ketone $60(872 \mathrm{mg}$, 73%) as an oil, R_{f} [light petroleum ($40-60^{\circ} \mathrm{C}$)-diethyl ether (10:1)] 0.38; $v_{\max }($ film $) / \mathrm{cm}^{-1} 1695(\mathrm{C}=\mathrm{O})$ and $1580(\mathrm{Ph})$;

[^2]$\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.37-7.27(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 2.39$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}$), $1.91-$ $1.66\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ and $\left.\mathrm{CH} \mathrm{Me}_{2}\right), 1.33(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCS}), 0.97(3 \mathrm{H}$, $\left.\mathrm{d}, J 6.2, \mathrm{CHMe} e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.83\left(3 \mathrm{H}, \mathrm{d}, J 6.4, \mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}\right)$ (Found: M^{+}, 236.1229. $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{OS}$ requires $\mathrm{M}, 236.1235$); m / z $236(3.5 \%, \mathrm{M}), 193(68, \mathrm{M}-\mathrm{COMe}), 137(100, \mathrm{PhSCHMe})$ and $110(32, \mathrm{PhSH})$.

5,7-Dimethyl-4-oxo-5-(phenylthio)octanonitrile 61.-Butyllithium ($2.3 \mathrm{~cm}^{3}, 3.45 \mathrm{mmol}$) was added to a solution of diisopropylamine ($0.53 \mathrm{~cm}^{3}, 3.76 \mathrm{mmol}$) in dry THF $\left(25 \mathrm{~cm}^{3}\right)$ under argon at $0^{\circ} \mathrm{C}$. After 15 min the solution was cooled to $-78^{\circ} \mathrm{C}$ and a mixture of the ketone $60(740 \mathrm{mg}, 3.14 \mathrm{mmol})$ and HMPA ($1.2 \mathrm{~cm}^{3}, 6.9 \mathrm{mmol}$) in dry THF $\left(12 \mathrm{~cm}^{3}\right)$ was added dropwise. After 40 min bromoacetonitrile ($0.26 \mathrm{~cm}^{3}, 3.76 \mathrm{mmol}$) was added and the mixture was stirred for 15 min before being poured into saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}\left(50 \mathrm{~cm}^{3}\right)$ and was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 50 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, evaporated, and purified by column chromatography on silica gel (30 g) with ($10: 1$) light petroleum ($40-$ $60^{\circ} \mathrm{C}$)-diethyl ether as eluent to give the ketone $61(664 \mathrm{mg}$, 77%) as an oil, R_{f} [light petroleum ($40-60^{\circ} \mathrm{C}$)-diethyl ether ($10: 1$)] $0.07 ; v_{\text {max }}$ (film)/ $\mathrm{cm}^{-1} 2230(\mathrm{CN}), 1700(\mathrm{C}=\mathrm{O})$ and 1580 $(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.39-7.29(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.34(1 \mathrm{H}, \mathrm{dt}, J 18.0$ and 7.3, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CO}\right), 3.02(1 \mathrm{H}, \mathrm{dt}, J 18.0$ and $7.3, \mathrm{CH} H \mathrm{~N}), 2.58$ ($2 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CH}_{2} \mathrm{~N}$), $1.87-1.68$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{Me}_{2}$), $1.39(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}), 0.97\left(3 \mathrm{H}, \mathrm{d}, J 6.2, \mathrm{CH} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.79(3 \mathrm{H}, \mathrm{d}, J 6.4$, $\left.\mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 203.17,136.37,130.00,129.60$, $128.89,119.17,59.58,45.14,32.16,25.55,24.52,23.21,20.64$ and 12.04 (Found: $\mathbf{M}^{+}, 275.1340 . \mathrm{C}_{16} \mathrm{H}_{21}$ NOS requires M , 275.1344); $m / z 275(8 \%, \mathrm{M}), 193\left(100, \mathrm{M}-\mathrm{OCCH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right)$ and 137 (76, PhSCHMe).
(4RS,5RS)- and (4RS,5SR)-1-Amino-5,7-dimethyl-5-(phenyl-thio)octan-4-ol 62.-Lithium aluminium hydride ($340 \mathrm{mg}, 8.9$ $\mathrm{mmol})$ was added to a solution of the ketone $61(615 \mathrm{mg}, 2.23$ $\mathrm{mmol})$ in dry diethyl ether $\left(20 \mathrm{~cm}^{3}\right)$ under argon at $0^{\circ} \mathrm{C}$. After 90 min the mixture was poured into aq. $\mathrm{NaOH}\left(50 \mathrm{~cm}^{3} ; 0.2 \mathrm{~mol}\right.$ dm^{-3}) and aq. sodium potassium tartrate ($50 \mathrm{~cm}^{3} ; 0.2 \mathrm{~mol} \mathrm{dm}^{-3}$) and was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(4 \times 40 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to give a 1:3:1 mixture of the amine $62(603 \mathrm{mg}, 96 \%)$ as an oil, $R_{\mathrm{f}}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ $\mathrm{EtOH}-\mathrm{aq} . \mathrm{NH}_{3}$ ($50: 8: 1$)] $0.28 ; v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} \quad 3340$, and $3270(\mathrm{NH}), 3150(\mathrm{OH})$ and $1580(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.60-7.49$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), $7.41-7.27(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.26(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.8, \mathrm{CHOH})$, $2.89-2.73\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.70-2.59\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}}\right)$, 2.56-2.23 (3 H , br s, OH and NH_{2}), 2.18-1.86 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 1.73-1.20 ($5 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{Me}$ and $2 \times \mathrm{CH}_{2}$), 1.22 and $1.15(3 \mathrm{H}, \mathrm{s}$ and s, Me), $0.99\left(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CH} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right.$) and 0.98 and 0.94 ($3 \mathrm{H}, \mathrm{d}$ and d, $J 6.6$ and $6.8, \mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}$); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 137.49$, $137.30,131.10,130.62,128.84,128.71,128.55,128.53,75.65$, $59.66,59.56,44.09,43.20,42.08,31.28,31.09,29.41,28.59,25.47$, 25.31, 25.11, 25.04, 24.44, 23.09 and 21.12 (Found: $\mathbf{M}^{+}-$ $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$, 233.1161. $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{OS}$ requires $\mathrm{M}-$ $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~N}, 233.1157$); $m / z 233$ ($0.3 \%, \mathrm{M}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$), $193\left(10, \mathrm{C}_{6} \mathrm{H}_{11} \mathrm{SPh}\right), 137\left(18, \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{SPh}\right)$ and 88 (100, $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{NO}$).
(4RS,5RS)- and (4RS,5SR)-N-[4-Hydroxy-5,7-dimethyl-5(phenylthio)octyl]tosylamide 63.-In the same was as for the sulfonamide 52, the amine $62(201 \mathrm{mg}, 0.715 \mathrm{mmol})$ and TsCl ($143 \mathrm{mg}, 0.75 \mathrm{mmol}$) gave an oil ($285 \mathrm{mg}, 92 \%$), which was purified by HPLC and elution with ($10: 1$) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-diethyl ether to give the ($4 R S, 5 R S$)-sulfonamide syn- $63(121 \mathrm{mg}, 39 \%)$ as an oil, $R_{\mathrm{f}}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-EtOH-aq. $\left.\mathrm{NH}_{3}(300: 8: 1)\right] 0.27 ; v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1}$ $3480(\mathrm{NH}), 3260(\mathrm{OH})$ and $1600(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.71(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 8.3, $\mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{2}$), $7.49-7.26\left(7 \mathrm{H}, \mathrm{m}, \mathrm{Ph}\right.$ and $\mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{2}$), $5.10-4.72$ ($1 \mathrm{H}, \mathrm{brs}, \mathrm{NH}$), $3.12(1 \mathrm{H}, \mathrm{dd}, J 10.0$ and $2.0, \mathrm{CHOH}$), 2.97-2.88 (2 H, sym. m, $\mathrm{CH}_{2} \mathrm{~N}$), $2.41(3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}), 2.03-1.97(1 \mathrm{H}, \mathrm{sym}$.
$\mathrm{m}, \mathrm{CH} \mathrm{Me}_{2}$), 1.65-1.25 ($7 \mathrm{H}, \mathrm{m}, \mathrm{OH}, \mathrm{CH}_{2} \mathrm{CHMe}_{2}$, and $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), $1.09(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCS}), 1.00(3 \mathrm{H}, \mathrm{d}, J 6.7$, $\mathrm{CHMe} \mathrm{A}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$) and 0.99 ($3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CHMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ 143.13, 137.46, 137.01, 129.74, 129.59, 129.20, 128.80, 127.07, 75.31, 59.93, 43.20, 42.26, 27.36, 27.15, 25.54, 25.06, 24.46, 23.43 and 21.48 (Found: $\mathrm{M}^{+}-\mathrm{PhS}$, 326.1789. $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{NO}_{3} \mathrm{~S}$ requires $\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}, 326.1790$); $m / z 326$ (5%, $\mathrm{M}-\mathrm{PhS}$), 242 ($76, \mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{SPh}$), $155\left(48, \mathrm{SO}_{2} \mathrm{Tol}\right)$ and $91\left(100, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)$; and the ($4 R S, 5 S R$)-sulfonamide anti-63 ($112 \mathrm{mg}, 36 \%$) as an oil, $R_{f}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-EtOH-aq. $\left.\mathrm{NH}_{3}(300: 8: 1)\right] 0.25 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ $3475(\mathrm{NH}), 3260(\mathrm{OH})$ and $1600(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right), 7.72(2 \mathrm{H}, \mathrm{d}$, $J 8.3, \mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{2}$), $7.48-7.27\left(7 \mathrm{H}, \mathrm{m}, \mathrm{Ph}\right.$ and $\mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{2}$), 5.03 $4.74(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 3.16(1 \mathrm{H}, \mathrm{d}, J 10.3, \mathrm{CHOH}), 3.00-2.92(2$ H , sym. m, $\mathrm{CH}_{2} \mathrm{~N}$), 2.41 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}$), 2.19-2.15 ($1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH} \mathrm{Me}_{2}$), $1.70-1.50\left(5 \mathrm{H}, \mathrm{m}, \mathrm{OH}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 1.30-$ 1.08 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHMe}_{2}$), 1.13 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeCS}$), 0.98 ($3 \mathrm{H}, \mathrm{d}, J$ $\left.6.5, \mathrm{CHMe} \mathrm{A}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.90\left(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}\right.$); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 143.12,136.99,130.21,129.58$, 129.03, 128.78, 127.05, 74.64, 61.14, 44.25, 43.19, 27.83, 27.21, 25.26, 24.86, $24.52,21.45$ and 19.53 (Found: $\mathrm{M}^{+}-\mathrm{PhS}$, 306.1778. $\mathrm{C}_{17}{ }_{7} \mathrm{H}_{28} \mathrm{NO}_{3} \mathrm{~S}$ requires $\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}, 326.1790$); $m / z 306$ (12%, $\mathrm{M}-\mathrm{PhS}), 242$ ($100, \mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{SPh}$), 193 ($58, \mathrm{C}_{6} \mathrm{H}_{11} \mathrm{SPh}$), $155\left(57, \mathrm{SO}_{2} \mathrm{Tol}\right), 110(63, \mathrm{PhSH})$ and $91\left(99, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)$.

Rearrangement of (4RS,5SR)-N-[4-Hydroxy-5,7-dimethyl-5(phenylthio)octyl]tosylamide anti-63.-In the same way as for the pyrrolidine 53 , the sulfonamide anti-63 ($50 \mathrm{mg}, 0.115 \mathrm{mmol}$) and TMSOTf ($24.4 \mathrm{~mm}^{3}, 0.126 \mathrm{mmol}$) gave the pyrrolidine 64 (27 $\mathrm{mg}, 77 \%$) as an oil, $R_{\mathrm{f}}\left[\right.$ light petroleum ($40-60^{\circ} \mathrm{C}$)-diethyl ether (4:1)] $0.29 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 1600$ (Ar) and 1345 and 1160 $\left(\mathrm{SO}_{2}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.69\left(2 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right), 7.28(2 \mathrm{H}, \mathrm{d}$, $\left.J 8.3, \mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right), 5.16(1 \mathrm{H}, \mathrm{d}, J 9.1, \mathrm{HC}=\mathrm{C}), 3.93(1 \mathrm{H}, \mathrm{t}, J 6.2$, $\mathrm{C}=\mathrm{CCHN}), 3.48-3.32\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.53-2.32(1 \mathrm{H}, \mathrm{m}$, $\mathrm{C} H \mathrm{Me}_{2}$), $2.41(3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}), 1.89-1.56\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 1.52$ ($3 \mathrm{H}, \mathrm{d}, J 1.2, \mathrm{C}=\mathrm{CMe}$), 0.94 ($3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CH} \mathrm{Me}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$) and 0.90 ($3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}$); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ 142.96, 135.53, 134.19, 131.96, 129.38, 127.50, 66.52, 49.39, 31.56, 26.90, 23.97, 22.77, 21.48 and 12.43 (Found: $\mathrm{M}^{+}, 307.1610 . \mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{~S}$ requires M, 307.1606); $m / z 307(7 \%, M), 224\left(100, \mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{11}\right), 155$ ($65, \mathrm{SO}_{2} \mathrm{Tol}$), $152\left(57, \mathrm{M}-\mathrm{SO}_{2} \mathrm{Tol}\right)$ and 91 (77, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}$); and the pyrrolidine $65(6 \mathrm{mg}, 17 \%)$ as an oil, R_{f} [light petroleum ($40-60^{\circ} \mathrm{C}$)-diethyl ether ($4: 1$)] $0.41 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1600$ (Ar) and 1320 and $1150\left(\mathrm{SO}_{2}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.70(2 \mathrm{H}, \mathrm{d}, J 8.2$, $\mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{2}$), $7.24\left(2 \mathrm{H}, \mathrm{d}, J 8.2, \mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right), 3.83(1 \mathrm{H}, \mathrm{dt}, J 13.8$ and $\left.3.7, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}\right), 3.19\left(1 \mathrm{H}, \operatorname{td}, J 13.8\right.$ and $\left.2.5, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{N}\right), 2.40$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}$), 1.80 ($1 \mathrm{H}, \mathrm{dd}, J 13.6$ and 5.2 , ring $\mathrm{HCC}=\mathrm{C}$), 1.74 $1.40\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH} \mathrm{Me}_{2}\right.$ and $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 1.42(3 \mathrm{H}, \mathrm{s}$, $\mathrm{MeC}=\mathrm{C}$) and 0.92 ($6 \mathrm{H}, \mathrm{t}, J 6.1, \mathrm{Me}_{2} \mathrm{C}$) (Found: $\mathrm{M}^{+}, 307.1602$); $m / z 307(0.04 \%, \mathrm{M}), 252\left(100, \mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{7}\right), 155\left(30, \mathrm{SO}_{2} \mathrm{Tol}\right)$ and $91\left(47, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)$.

Rearrangement of (4RS,5RS)-N-[4-Hydroxy-5,7-dimethyl-5(phenylthio)octyl]tosylamide syn-63.-In the same way as for the pyrrolidine 53 , the sulfonamide $\operatorname{syn}-63(41.5 \mathrm{mg}, 0.095$ $\mathrm{mmol})$ and TMSOTf ($20 \mathrm{~mm}^{3}, 0.105 \mathrm{mmol}$) gave the pyrrolidine $63(23 \mathrm{mg}, 79 \%)$ as an oil, characterization as before, and the pyrrolidine $65(2 \mathrm{mg}, 7 \%)$ as an oil, characterization as before.
(4RS,5RS)-N-[5,7-Dimethyl-5-phenylthio-4-(trimethylsiloxy)octyl]tosylamide 66 .-TMSOTf ($11.6 \mathrm{~mm}^{3}, 0.06 \mathrm{mmol}$) was added to a solution of the sulfonamide syn-63 ($25 \mathrm{mg}, 0.057$ $\mathrm{mmol})$ in dry THF $\left(1 \mathrm{~cm}^{3}\right)$ under argon at $-78^{\circ} \mathrm{C}$. After 20 min the solution was poured into brine $\left(10 \mathrm{~cm}^{3}\right)$ and was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \times 20 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, evaporated, and purified by column chromatography on silica gel (7 g) with ($2: 1$) light petroleum $\left(40-60^{\circ} \mathrm{C}\right.$)diethyl ether as eluent to to give the sulfonamide $66(15 \mathrm{mg}$, 51%) as an oil, R_{f} [light petroleum ($40-60^{\circ} \mathrm{C}$)-diethyl ether
(2:1)] 0.34; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3270(\mathrm{NH}), 1600(\mathrm{OH})$, and 1325 and $1160\left(\mathrm{SO}_{2}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.75\left(2 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right)$, 7.49-7.45 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.32-7.23 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ and $\mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{2}$), $4.44(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 6.1, \mathrm{NH}), 3.42(1 \mathrm{H}$, dd, $J 9.0$ and $1.8, \mathrm{CHO}$), $2.96\left(2 \mathrm{H}, \mathrm{q}, J 6.6, \mathrm{CH}_{2} \mathrm{~N}\right), 2.42(3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}), 2.05-1.91$ (1 H , sym. m, $\mathrm{C} H \mathrm{Me}_{2}$), $1.82-1.24$ ($6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CS}$ and $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 1.06(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCS}), 0.94(3 \mathrm{H}, \mathrm{d}, J 6.7$, $\left.\mathrm{CHMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right), 0.93\left(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CHMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $-0.02(9 \mathrm{H}$, s, $\left.\mathrm{SiMe}_{3}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ 143.16, 137.48, 137.24, 129.61, 129.23, 128.32 , 128.24, 127.10, 80.11, 58.16, 46.38, 43.52, 29.82, 27.64, 26.95, 25.46, 25.18, 24.48, 21.50 and 0.86 (Found: $\mathrm{M}^{+}-\mathrm{PhS}$, 398.2186. $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{NO}_{3} \mathrm{SSi}$ requires $\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}, 398.2185$); $m / z 398(6 \%, M-\mathrm{PhS}), 224\left(100, \mathrm{C}_{4} \mathrm{H}_{6} \mathrm{NHSO}_{2}\right.$ Tol $), 155$ ($70, \mathrm{SO}_{2} \mathrm{Tol}$), $110(62, \mathrm{PhSH}), 91\left(70, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)$ and 73 (72, SiMe_{3}).
(3RS,4SR)-3,8-Dimethyl-4-phenylthio-1,8-diazaspiro[4.5]decane anti-67.-Method A (red-Al). Sodium bis(2-methoxyethoxy)aluminium hydride (red-Al) ($26 \mathrm{~mm}^{3}, 0.19 \mathrm{mmol}$) was added to a mixture of sulfonamide anti-47 ($20 \mathrm{mg}, 0.046 \mathrm{mmol}$) in benzene ($1 \mathrm{~cm}^{3}$) under argon at room temperature. The solution was heated under reflux for 6 h , poured into aq. $\mathrm{NaOH}\left(10 \mathrm{~cm}^{3}\right.$; $0.2 \mathrm{~mol} \mathrm{dm}{ }^{3}$) and aq. sodium potassium tartrate $\left(5 \mathrm{~cm}^{3} ; 0.2 \mathrm{~mol}\right.$ $\mathrm{dm}{ }^{3}$), and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 20 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, evaporated, and purified by column chromatography on silica gel (4 g) with elution with ($50: 8: 1$) $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-\mathrm{aq} . \mathrm{NH}_{3}$ to give the amine anti-67 (7.5 $\mathrm{mg}, 58 \%$) as an oil, $R_{\mathrm{f}}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-\right.$ aq. $\left.\mathrm{NH}_{3}(50: 8: 1)\right] 0.40$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1580(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.47-7.42(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, $7.30-7.15(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.15\left(1 \mathrm{H}, \mathrm{dd}, J 11.3\right.$ and $\left.8.4, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}\right)$, 2.78-2.65(2 H, m, NCH 2), 2.72 ($1 \mathrm{H}, \mathrm{d}, J 10.1, \mathrm{C} H \mathrm{SPh}), 2.53(1$ $\mathrm{H}, \mathrm{dd}, J 11.3$ and $\left.8.1, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{N}\right), 2.43-2.08\left(4 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}, \mathrm{NH}\right.$ and $\mathrm{C} H \mathrm{Me}), 2.28(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 2.06(1 \mathrm{H}, \mathrm{td}, J 13.0$ and 4.1 , $\left.\mathrm{NCH}_{2} \mathrm{CH}^{\mathrm{ax}}\right), 1.93\left(1 \mathrm{H}, \mathrm{td}, J 13.0\right.$ and $\left.4.5, \mathrm{NCH}_{2} \mathrm{CH}^{\mathrm{ax}}\right), 1.45(1$ H , ddd, J 13.3, 5.5 and $2.8, \mathrm{NCH}_{2} \mathrm{CH}^{\mathrm{eq}}$), $1.29(1 \mathrm{H}$, ddd, J 13.3, 5.5 and $2.7, \mathrm{NCH}_{2} \mathrm{CH}^{\text {eq }}$) and 1.14 ($3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CHM}$) (Found: $\mathrm{M}^{+}, 276.1657 . \mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{~S}$ requires $\mathrm{M}, 276.1660$); $m / z 276(9 \%$, M), $275(11, \mathrm{M}-\mathrm{H}), 167(100, \mathrm{M}-\mathrm{PhS})$ and $110(38, \mathrm{PhSH})$.

Method B (sodium naphthalenide). Sodium metal (200 mg) was added to naphthalene (280 mg , recrystallized from MeOH) in freshly distilled 1,2 -dimethoxyethane $\left(6 \mathrm{~cm}^{3}\right)$ under argon at room temperature. The resulting green solution was stirred at $0^{\circ} \mathrm{C}$ for 2 h , and a fraction of this $\left(1.5 \mathrm{~cm}^{3}\right)$ was added to a solution of the sulfonamide anti-47 ($61 \mathrm{mg}, 0.14 \mathrm{mmol}$) in dry 1,2-dimethoxyethane ($1 \mathrm{~cm}^{3}$) under argon at $-65^{\circ} \mathrm{C}$. After 15 min the mixture was quenched with aq. $\mathrm{NH}_{4} \mathrm{Cl}\left(5 \mathrm{~cm}^{3}\right)$, poured into saturated aq. $\mathrm{NaHCO}_{3}\left(40 \mathrm{~cm}^{3}\right)$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(4 \times 20 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{Na}_{2}{ }^{-}\right.$ SO_{4}), evaporated, and purified by column chromatography on silica gel $(4 \mathrm{~g})$ with $(75: 8: 1) \mathrm{CH}_{2} \mathrm{Cl}_{2}$-EtOH-aq. NH_{3} as eluent to give the amine anti-67 ($17 \mathrm{mg}, 43 \%$) as an oil, characterization as before.
(3RS,4RS)-3,8-Dimethyl-4-phenylthio-1,8-diazaspiro[4.5]decane syn-67.-In the same way as for the amine anti-67, the sulfonamide syn- 47 ($55 \mathrm{mg}, 0.13 \mathrm{mmol}$) and red-Al $\left(72 \mathrm{~mm}^{3}, 0.51\right.$ $\mathrm{mmol})$ gave the amine syn $-67(24 \mathrm{mg}, 68 \%)$ as an oil, $R_{\mathrm{f}}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ EtOH-aq. $\left.\mathrm{NH}_{3}(75: 8: 1)\right] 0.31 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3280(\mathrm{NH})$ and $1580(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.44-7.33(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.30-7.11(3 \mathrm{H}, \mathrm{m}$, Ph), $3.34(1 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{CHSPh}), 3.20(1 \mathrm{H}, \mathrm{ddd}, J 13.3,6.4$ and $\left.3.9, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{NH}\right), \quad 2.71-2.58\left(4 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}, \mathrm{NCH}\right.$ and $\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{NH}$), 2.38-2.21 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}$ and NH), $2.28(3 \mathrm{H}, \mathrm{s}$, NMe), 2.13-1.84 ($3 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{Me}$ and $\mathrm{NCH}_{2} \mathrm{CH}_{2}$), $1.62(1 \mathrm{H}$, ddd, $J 13.4,5.8$ and $2.7, \mathrm{NCH}_{2} \mathrm{CH}^{\text {eq }}$), 1.43 (1 H , ddd, $J 13.4,5.8$ and 2.9, $\mathrm{NCH}_{2} \mathrm{CH}^{\mathrm{eq}}$) and $1.10(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CH} M e)$ (Found: $\mathbf{M}^{+}, 276.1667 . \mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{~S}$ requires $\mathrm{M}, 276.1660$); $m / z 276(12 \%, \mathrm{M}), 275(15, \mathrm{M}-\mathrm{H}), 167(100, \mathrm{M}-\mathrm{PhS})$ and $58\left(76, C_{3} H_{8} N\right)$.

3,8-Dimethyl-1-tosyl-1,8-diazaspiro[4.5]decane 68.-Raney nickel ($1 \mathrm{~g} ; 50 \%$ slurry in water) was added to a solution of the sulfonamide anti-47 ($49 \mathrm{mg}, 0.114 \mathrm{mmol}$) in ethanol $\left(1.5 \mathrm{~cm}^{3}\right)$ under argon at room temperature. The mixture was heated under reflux for 30 min , and was then filtered through Celite and washed with ethanol ($100 \mathrm{~cm}^{3}$). The solvent was evaporated off under reduced pressure to give the sulfonamide $\mathbf{6 8}(24 \mathrm{mg}, 65 \%$) as needles, m.p. $117-118^{\circ} \mathrm{C} ; R_{\mathrm{f}}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-EtOH-aq. NH_{3} ($100: 8: 1$)] $0.55 ; \quad v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} \quad 1330(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $7.71\left(2 \mathrm{H}, \mathrm{d}, J 8.2, \mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right.$), $7.23\left(2 \mathrm{H}, \mathrm{d}, J 8.2, \mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right), 3.64$ $\left(1 \mathrm{H}, \mathrm{t}, J 8.3, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{NS}\right), 2.86-2.72\left[4 \mathrm{H}, \mathrm{m}, \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right], 2.64$ $2.42\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{NS}\right), 2.38$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}$), 2.35-2.10(1 H, m, $\mathrm{CHMe}), 2.22(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 2.04-1.81\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2}{ }^{\mathrm{ax}}\right)$, $1.47\left(1 \mathrm{H}, \mathrm{dd}, J 13.0\right.$ and $\left.2.5, \mathrm{NCH}_{2} \mathrm{CH}^{\mathrm{eq}}\right), 1.32-1.00[3 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CH}(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{~N}$ and $\left.\mathrm{NCH}_{2} \mathrm{CH}^{\text {eq }}\right]$ and $0.99(3 \mathrm{H}, \mathrm{d}, J 6.3$, $\mathrm{CH} M e$) (Found: $\mathrm{M}^{+}, 322.1716 . \mathrm{C}_{17} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires M , $322.1715) ; m / z 322(6 \%, \mathrm{M}), 167\left(58, \mathrm{M}-\mathrm{SO}_{2} \mathrm{Tol}\right)$ and $70(100$, $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}$) (Found: C, 63.1; H, 8.1; N, 8.7; S, 10.0. $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 63.32 ; \mathrm{H}, 8.13 ; \mathrm{N}, 8.69 ; \mathrm{S}, 9.94 \%$).
[1RS,2'RS(E)]-2-(3'-Amino-2'-methylpropylidene)cyclohexanol anti-69.-Sodium perborate ($62 \mathrm{mg}, 0.4 \mathrm{mmol}$) was added to a solution of the allylic sulfide anti-14 ($101 \mathrm{mg}, 0.39 \mathrm{mmol}$) in glacial acetic acid ($1.5 \mathrm{~cm}^{3}$) under nitrogen at room temperature. After 4 h , water $\left(20 \mathrm{~cm}^{3}\right)$ and aq. $\mathrm{NaOH}\left(8 \mathrm{~cm}^{3}\right.$; 10%) were added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($4 \times 30 \mathrm{~cm}^{3}$). The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to give the sulfoxide, to which, in $\mathrm{MeOH}\left(4 \mathrm{~cm}^{3}\right)$, was added trimethyl phosphite ($0.09 \mathrm{~cm}^{3}, 0.77 \mathrm{mmol}$) and the solution was refluxed for 10 min . The solvent was evaporated off under reduced pressure and the residue was purified by column chromatography on silica gel (6 g) and eluted with ($50: 8: 1$) $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-\mathrm{aq} . \mathrm{NH}_{3}$ to give the allylic alcohol anti-69 (42 $\mathrm{mg}, 64 \%$) as an oil, $R_{\mathrm{f}}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-\mathrm{aq} . \mathrm{NH}_{3}(80: 8: 1)\right] 0.06$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) 3600(\mathrm{OH}), 3360\left(\mathrm{NH}_{2}\right), 1650(\mathrm{C}=\mathrm{C})$ and 1600 (NH bend); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 5.09(1 \mathrm{H}, \mathrm{d}, J 8.4, \mathrm{HC=C}), 4.07(1 \mathrm{H}$, dd, $J 6.7$ and $2.3, \mathrm{CHOH}), 2.73-2.59\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}\right), 2.55-$ $2.42\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}\right.$ and OH$), 2.07-1.38\left(11 \mathrm{H}, \mathrm{m}, \mathrm{C}_{4} \mathrm{H}_{8}\right.$, $\mathrm{C} H \mathrm{Me}$ and $\left.\mathrm{NH}_{2}\right)$ and $0.94(3 \mathrm{H}, \mathrm{d}, J 6.2, \mathrm{CHMe}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ 142.97, 124.58, 73.21, 48.03, 36.07, 34.07,27.57, 26.38, 22.73 and 19.17 (Found: $\mathrm{M}^{+}-\mathrm{H}, 168.1383$. $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{NO}$ requires $\mathrm{M}-$ $\mathrm{H}, 168.1388) ; \mathrm{m} / \mathrm{z} 168(3 \%, \mathrm{M}-\mathrm{H}), 122$ ($100, \mathrm{M}-\mathrm{OH}-$ $\mathrm{CH}_{2} \mathrm{NH}_{2}$), $107\left(54, \mathrm{C}_{8} \mathrm{H}_{11}\right), 93\left(33, \mathrm{C}_{7} \mathrm{H}_{9}\right)$ and $79(46)$.
[IRS,2'SR(E)]-2-(3'-Amino-2'-methylpropylidene)cyclohexanol syn-69.-In the same way as for the alcohol anti-69, the allylic sulfide syn-14 ($104 \mathrm{mg}, 0.4 \mathrm{mmol}$) gave the allylic alcohol syn-69 ($46 \mathrm{mg}, 68 \%$) as an oil, $R_{\mathrm{f}}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}-\mathrm{aq} . \mathrm{NH}_{3}\right.$ (75:8:1)] 0.05; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3330$ and $3260\left(\mathrm{NH}_{2}\right)$ and $1585\left(\mathrm{NH}\right.$ bend); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 5.11(1 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{HC}=\mathrm{C}), 4.06$ $(1 \mathrm{H}, \mathrm{brt}, J 4.1, \mathrm{CHOH}), 2.66-2.37\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{Me}\right.$ and $\mathrm{CH}_{2} \mathrm{~N}$), $1.96\left(3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right.$ and OH$), 1.90-\mathrm{l} .68\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{4} \mathrm{H}_{4}\right), 1.63-$ $1.34\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{4} \mathrm{H}_{4}\right)$ and $0.94(3 \mathrm{H}, \mathrm{d}, J 6.2, \mathrm{CHMe})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 142.99,123.76,73.13,48.45,36.55,34.66,27.71$, 27.05, 23.41 and 18.98 (Found: $\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 151.1367$. $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{~N}$ requires $\mathrm{M}-\mathrm{H}_{2} \mathrm{O}, 151.1361$); $m / z 151$ ($7 \%, \mathrm{M}-$ $\left.\mathrm{H}_{2} \mathrm{O}\right), 122\left(100, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{2} \mathrm{NH}\right)$ and 109 (43).

Acknowledgements

We thank the SERC for a grant (to I. C.) and Glaxo Group Research (Ware) for a CASE award (to I. C.).

References

1 P. Brownbridge and S. Warren, J. Chem. Soc., Perkin Trans. I, 1977, 2272.

2 (a) V. K. Aggarwal and S. Warren, Tetrahedron Lett., 1986, 27, 101; (b) V. K. Aggarwal, I. Coldham, S. McIntyre and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1991, 451.

3 Inversion also occurs at the migration origin, see V. K. Aggarwal, I. Coldham, S. McIntyre, F. H. Sansbury, M.-J. Villa and S. Warren, Tetrahedron Lett., 1988, 29, 4885.
4 See also I. Coldham, E. W. Collington, P. Hallett and S. Warren, Tetrahedron Lett., 1988, 29, 5321; K. Chibale and S. Warren, Tetrahedron Lett., 1991, 32, 6645; I. Coldham and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1992, 2303.
5 Preliminary communication: I. Coldham and S. Warren, Tetrahedron Lett., 1989, 30, 5937.
6 M. Hirama, D. S. Garvey, L. D. L. Lu and S. Masamune, Tetrahedron Lett., 1979, 3937.
7 A. de Groot and B. J. M. Jansen, Tetrahedron Lett., 1981, 22, 887; Synthesis, 1985, 434; J. Otera, Synthesis, 1988, 95.
8 A. Basha, M. Lipton and S. M. Weinreb, Tetrahedron Lett., 1977, 4171.

9 C. H. Heathcock, M. C. Pirrung and J. E. Sohn, J. Org. Chem., 1979, 44, 4294.
10 T. Aida, R. Legault, D. Dugat and T. Durst, Tetrahedron Lett., 1979, 4993; M. Ihara, Y. Haga, M. Yonekura, T. Ohsawa, K. Fukumoto and T. Kametani, J. Am. Chem. Soc., 1983, 105, 7345; Z. K. M. Abd El Samii, M. I. Al Ashmawy and J. M. Mellor, Tetrahedron Lett., 1987, 28, 1949.
11 (a) A. Toshimitsu, K. Terao and S. Uemura, J. Org. Chem., 1986, 51, 1724; (b) J. Org. Chem., 1987, 52, 2018; (c) D. L. J. Clive, C. K. Wong, W. A. Kiel and S. M. Menchen, J. Chem. Soc., Chem. Commun., 1979,

379; (d) K. C. Nicolaou, D. A. Claremon, W. E. Barnette and S. P. Seitz, J. Am. Chem. Soc., 1979, 101, 3704; (e) D. L. J. Clive, V. Farina, A. Singh, C. K. Wong, W. A. Kiel and S. M. Menchen, J. Org. Chem., 1980, 45, 2120; (f) R. R. Webb and S. Danishefsky, Tetrahedron Lett., 1983, 24, 1357.
12 L. S. Hegedus and J. M. McKearin, J. Am. Chem Soc., 1982, 104, 2444; Y. Tamaru, M. Hojo, H. Higashimura and Z. Yoshida, J. Am. Chem. Soc., 1988, 110, 3994; Y. Tamaru, M. Hojo and Z. Yoshida, J. Org. Chem., 1988, 53, 5731.
13 Y. Tamaru, S. Kawamura, T. Bando, K. Tanaka, M. Hojo and Z. Yoshida, J. Org. Chem., 1988, 53, 5491.
14 J. E. Baldwin, J. Chem. Soc., Chem. Commun., 1976, 734.
15 P. Brownbridge and S. Warren, J. Chem. Soc., Perkin Trans. I, 1977, 1131.

16 F. H. Sansbury and S. Warren, Tetrahedron Lett., 1991, 32, 3425; 1992, 33, 539.
17 H. J. Reich and J. M. Renga, J. Org. Chem., 1975, 40, 3313; ref. 1le. 18 E. H. Gold and E. Babad, J. Org. Chem., 1972, 37, 2208.
19 A. McKillop and J. A. Tarbin, Tetrahedron Lett., 1983, 24, 1505.

Paper 3/01126G
Received 25th February 1993
Accepted 8th April 1993

[^0]: * For further examples, see ref. $2 b$.

[^1]: * Revealed by $\mathrm{D}_{2} \mathrm{O}$ shake.

[^2]: * Reduces to triplet after $\mathrm{D}_{2} \mathrm{O}$ shake.

